e_lgammaf_r.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. /* e_lgammaf_r.c -- float version of e_lgamma_r.c.
  2. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
  3. */
  4. /*
  5. * ====================================================
  6. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  7. *
  8. * Developed at SunPro, a Sun Microsystems, Inc. business.
  9. * Permission to use, copy, modify, and distribute this
  10. * software is freely granted, provided that this notice
  11. * is preserved.
  12. * ====================================================
  13. */
  14. #include "cdefs-compat.h"
  15. //__FBSDID("$FreeBSD: src/lib/msun/src/e_lgammaf_r.c,v 1.12 2011/10/15 07:00:28 das Exp $");
  16. #include <openlibm_math.h>
  17. #include "math_private.h"
  18. static const float
  19. two23= 8.3886080000e+06, /* 0x4b000000 */
  20. half= 5.0000000000e-01, /* 0x3f000000 */
  21. one = 1.0000000000e+00, /* 0x3f800000 */
  22. pi = 3.1415927410e+00, /* 0x40490fdb */
  23. a0 = 7.7215664089e-02, /* 0x3d9e233f */
  24. a1 = 3.2246702909e-01, /* 0x3ea51a66 */
  25. a2 = 6.7352302372e-02, /* 0x3d89f001 */
  26. a3 = 2.0580807701e-02, /* 0x3ca89915 */
  27. a4 = 7.3855509982e-03, /* 0x3bf2027e */
  28. a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
  29. a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
  30. a7 = 5.1006977446e-04, /* 0x3a05b634 */
  31. a8 = 2.2086278477e-04, /* 0x39679767 */
  32. a9 = 1.0801156895e-04, /* 0x38e28445 */
  33. a10 = 2.5214456400e-05, /* 0x37d383a2 */
  34. a11 = 4.4864096708e-05, /* 0x383c2c75 */
  35. tc = 1.4616321325e+00, /* 0x3fbb16c3 */
  36. tf = -1.2148628384e-01, /* 0xbdf8cdcd */
  37. /* tt = -(tail of tf) */
  38. tt = 6.6971006518e-09, /* 0x31e61c52 */
  39. t0 = 4.8383611441e-01, /* 0x3ef7b95e */
  40. t1 = -1.4758771658e-01, /* 0xbe17213c */
  41. t2 = 6.4624942839e-02, /* 0x3d845a15 */
  42. t3 = -3.2788541168e-02, /* 0xbd064d47 */
  43. t4 = 1.7970675603e-02, /* 0x3c93373d */
  44. t5 = -1.0314224288e-02, /* 0xbc28fcfe */
  45. t6 = 6.1005386524e-03, /* 0x3bc7e707 */
  46. t7 = -3.6845202558e-03, /* 0xbb7177fe */
  47. t8 = 2.2596477065e-03, /* 0x3b141699 */
  48. t9 = -1.4034647029e-03, /* 0xbab7f476 */
  49. t10 = 8.8108185446e-04, /* 0x3a66f867 */
  50. t11 = -5.3859531181e-04, /* 0xba0d3085 */
  51. t12 = 3.1563205994e-04, /* 0x39a57b6b */
  52. t13 = -3.1275415677e-04, /* 0xb9a3f927 */
  53. t14 = 3.3552918467e-04, /* 0x39afe9f7 */
  54. u0 = -7.7215664089e-02, /* 0xbd9e233f */
  55. u1 = 6.3282704353e-01, /* 0x3f2200f4 */
  56. u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
  57. u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
  58. u4 = 2.2896373272e-01, /* 0x3e6a7578 */
  59. u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
  60. v1 = 2.4559779167e+00, /* 0x401d2ebe */
  61. v2 = 2.1284897327e+00, /* 0x4008392d */
  62. v3 = 7.6928514242e-01, /* 0x3f44efdf */
  63. v4 = 1.0422264785e-01, /* 0x3dd572af */
  64. v5 = 3.2170924824e-03, /* 0x3b52d5db */
  65. s0 = -7.7215664089e-02, /* 0xbd9e233f */
  66. s1 = 2.1498242021e-01, /* 0x3e5c245a */
  67. s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
  68. s3 = 1.4635047317e-01, /* 0x3e15dce6 */
  69. s4 = 2.6642270386e-02, /* 0x3cda40e4 */
  70. s5 = 1.8402845599e-03, /* 0x3af135b4 */
  71. s6 = 3.1947532989e-05, /* 0x3805ff67 */
  72. r1 = 1.3920053244e+00, /* 0x3fb22d3b */
  73. r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
  74. r3 = 1.7193385959e-01, /* 0x3e300f6e */
  75. r4 = 1.8645919859e-02, /* 0x3c98bf54 */
  76. r5 = 7.7794247773e-04, /* 0x3a4beed6 */
  77. r6 = 7.3266842264e-06, /* 0x36f5d7bd */
  78. w0 = 4.1893854737e-01, /* 0x3ed67f1d */
  79. w1 = 8.3333335817e-02, /* 0x3daaaaab */
  80. w2 = -2.7777778450e-03, /* 0xbb360b61 */
  81. w3 = 7.9365057172e-04, /* 0x3a500cfd */
  82. w4 = -5.9518753551e-04, /* 0xba1c065c */
  83. w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
  84. w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
  85. static const float zero= 0.0000000000e+00;
  86. static float sin_pif(float x)
  87. {
  88. float y,z;
  89. int n,ix;
  90. GET_FLOAT_WORD(ix,x);
  91. ix &= 0x7fffffff;
  92. if(ix<0x3e800000) return __kernel_sindf(pi*x);
  93. y = -x; /* x is assume negative */
  94. /*
  95. * argument reduction, make sure inexact flag not raised if input
  96. * is an integer
  97. */
  98. z = floorf(y);
  99. if(z!=y) { /* inexact anyway */
  100. y *= (float)0.5;
  101. y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
  102. n = (int) (y*(float)4.0);
  103. } else {
  104. if(ix>=0x4b800000) {
  105. y = zero; n = 0; /* y must be even */
  106. } else {
  107. if(ix<0x4b000000) z = y+two23; /* exact */
  108. GET_FLOAT_WORD(n,z);
  109. n &= 1;
  110. y = n;
  111. n<<= 2;
  112. }
  113. }
  114. switch (n) {
  115. case 0: y = __kernel_sindf(pi*y); break;
  116. case 1:
  117. case 2: y = __kernel_cosdf(pi*((float)0.5-y)); break;
  118. case 3:
  119. case 4: y = __kernel_sindf(pi*(one-y)); break;
  120. case 5:
  121. case 6: y = -__kernel_cosdf(pi*(y-(float)1.5)); break;
  122. default: y = __kernel_sindf(pi*(y-(float)2.0)); break;
  123. }
  124. return -y;
  125. }
  126. DLLEXPORT float
  127. __ieee754_lgammaf_r(float x, int *signgamp)
  128. {
  129. float t,y,z,nadj,p,p1,p2,p3,q,r,w;
  130. int32_t hx;
  131. int i,ix;
  132. GET_FLOAT_WORD(hx,x);
  133. /* purge off +-inf, NaN, +-0, tiny and negative arguments */
  134. *signgamp = 1;
  135. ix = hx&0x7fffffff;
  136. if(ix>=0x7f800000) return x*x;
  137. if(ix==0) return one/zero;
  138. if(ix<0x35000000) { /* |x|<2**-21, return -log(|x|) */
  139. if(hx<0) {
  140. *signgamp = -1;
  141. return -__ieee754_logf(-x);
  142. } else return -__ieee754_logf(x);
  143. }
  144. if(hx<0) {
  145. if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
  146. return one/zero;
  147. t = sin_pif(x);
  148. if(t==zero) return one/zero; /* -integer */
  149. nadj = __ieee754_logf(pi/fabsf(t*x));
  150. if(t<zero) *signgamp = -1;
  151. x = -x;
  152. }
  153. /* purge off 1 and 2 */
  154. if (ix==0x3f800000||ix==0x40000000) r = 0;
  155. /* for x < 2.0 */
  156. else if(ix<0x40000000) {
  157. if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
  158. r = -__ieee754_logf(x);
  159. if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
  160. else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
  161. else {y = x; i=2;}
  162. } else {
  163. r = zero;
  164. if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
  165. else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
  166. else {y=x-one;i=2;}
  167. }
  168. switch(i) {
  169. case 0:
  170. z = y*y;
  171. p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
  172. p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
  173. p = y*p1+p2;
  174. r += (p-(float)0.5*y); break;
  175. case 1:
  176. z = y*y;
  177. w = z*y;
  178. p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
  179. p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
  180. p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
  181. p = z*p1-(tt-w*(p2+y*p3));
  182. r += (tf + p); break;
  183. case 2:
  184. p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
  185. p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
  186. r += (-(float)0.5*y + p1/p2);
  187. }
  188. }
  189. else if(ix<0x41000000) { /* x < 8.0 */
  190. i = (int)x;
  191. y = x-(float)i;
  192. p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
  193. q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
  194. r = half*y+p/q;
  195. z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
  196. switch(i) {
  197. case 7: z *= (y+(float)6.0); /* FALLTHRU */
  198. case 6: z *= (y+(float)5.0); /* FALLTHRU */
  199. case 5: z *= (y+(float)4.0); /* FALLTHRU */
  200. case 4: z *= (y+(float)3.0); /* FALLTHRU */
  201. case 3: z *= (y+(float)2.0); /* FALLTHRU */
  202. r += __ieee754_logf(z); break;
  203. }
  204. /* 8.0 <= x < 2**58 */
  205. } else if (ix < 0x5c800000) {
  206. t = __ieee754_logf(x);
  207. z = one/x;
  208. y = z*z;
  209. w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
  210. r = (x-half)*(t-one)+w;
  211. } else
  212. /* 2**58 <= x <= inf */
  213. r = x*(__ieee754_logf(x)-one);
  214. if(hx<0) r = nadj - r;
  215. return r;
  216. }