k_log.h 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. /* @(#)e_log.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include "cdefs-compat.h"
  13. //__FBSDID("$FreeBSD: src/lib/msun/src/k_log.h,v 1.2 2011/10/15 05:23:28 das Exp $");
  14. /*
  15. * k_log1p(f):
  16. * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
  17. *
  18. * The following describes the overall strategy for computing
  19. * logarithms in base e. The argument reduction and adding the final
  20. * term of the polynomial are done by the caller for increased accuracy
  21. * when different bases are used.
  22. *
  23. * Method :
  24. * 1. Argument Reduction: find k and f such that
  25. * x = 2^k * (1+f),
  26. * where sqrt(2)/2 < 1+f < sqrt(2) .
  27. *
  28. * 2. Approximation of log(1+f).
  29. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  30. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  31. * = 2s + s*R
  32. * We use a special Reme algorithm on [0,0.1716] to generate
  33. * a polynomial of degree 14 to approximate R The maximum error
  34. * of this polynomial approximation is bounded by 2**-58.45. In
  35. * other words,
  36. * 2 4 6 8 10 12 14
  37. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  38. * (the values of Lg1 to Lg7 are listed in the program)
  39. * and
  40. * | 2 14 | -58.45
  41. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  42. * | |
  43. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  44. * In order to guarantee error in log below 1ulp, we compute log
  45. * by
  46. * log(1+f) = f - s*(f - R) (if f is not too large)
  47. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  48. *
  49. * 3. Finally, log(x) = k*ln2 + log(1+f).
  50. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  51. * Here ln2 is split into two floating point number:
  52. * ln2_hi + ln2_lo,
  53. * where n*ln2_hi is always exact for |n| < 2000.
  54. *
  55. * Special cases:
  56. * log(x) is NaN with signal if x < 0 (including -INF) ;
  57. * log(+INF) is +INF; log(0) is -INF with signal;
  58. * log(NaN) is that NaN with no signal.
  59. *
  60. * Accuracy:
  61. * according to an error analysis, the error is always less than
  62. * 1 ulp (unit in the last place).
  63. *
  64. * Constants:
  65. * The hexadecimal values are the intended ones for the following
  66. * constants. The decimal values may be used, provided that the
  67. * compiler will convert from decimal to binary accurately enough
  68. * to produce the hexadecimal values shown.
  69. */
  70. static const double
  71. Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  72. Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  73. Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  74. Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  75. Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  76. Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  77. Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  78. /*
  79. * We always inline k_log1p(), since doing so produces a
  80. * substantial performance improvement (~40% on amd64).
  81. */
  82. static inline double
  83. k_log1p(double f)
  84. {
  85. double hfsq,s,z,R,w,t1,t2;
  86. s = f/(2.0+f);
  87. z = s*s;
  88. w = z*z;
  89. t1= w*(Lg2+w*(Lg4+w*Lg6));
  90. t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  91. R = t2+t1;
  92. hfsq=0.5*f*f;
  93. return s*(hfsq+R);
  94. }