s_ctan.c 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. /* $OpenBSD: s_ctan.c,v 1.6 2013/07/03 04:46:36 espie Exp $ */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /* ctan()
  18. *
  19. * Complex circular tangent
  20. *
  21. *
  22. *
  23. * SYNOPSIS:
  24. *
  25. * double complex ctan();
  26. * double complex z, w;
  27. *
  28. * w = ctan (z);
  29. *
  30. *
  31. *
  32. * DESCRIPTION:
  33. *
  34. * If
  35. * z = x + iy,
  36. *
  37. * then
  38. *
  39. * sin 2x + i sinh 2y
  40. * w = --------------------.
  41. * cos 2x + cosh 2y
  42. *
  43. * On the real axis the denominator is zero at odd multiples
  44. * of PI/2. The denominator is evaluated by its Taylor
  45. * series near these points.
  46. *
  47. * ctan(z) = -i ctanh(iz).
  48. *
  49. * ACCURACY:
  50. *
  51. * Relative error:
  52. * arithmetic domain # trials peak rms
  53. * DEC -10,+10 5200 7.1e-17 1.6e-17
  54. * IEEE -10,+10 30000 7.2e-16 1.2e-16
  55. * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
  56. */
  57. #include <float.h>
  58. #include <openlibm_complex.h>
  59. #include <openlibm_math.h>
  60. #define MACHEP 1.1e-16
  61. #define MAXNUM 1.0e308
  62. static const double DP1 = 3.14159265160560607910E0;
  63. static const double DP2 = 1.98418714791870343106E-9;
  64. static const double DP3 = 1.14423774522196636802E-17;
  65. static double
  66. _redupi(double x)
  67. {
  68. double t;
  69. long i;
  70. t = x/M_PI;
  71. if (t >= 0.0)
  72. t += 0.5;
  73. else
  74. t -= 0.5;
  75. i = t; /* the multiple */
  76. t = i;
  77. t = ((x - t * DP1) - t * DP2) - t * DP3;
  78. return (t);
  79. }
  80. /* Taylor series expansion for cosh(2y) - cos(2x) */
  81. static double
  82. _ctans(double complex z)
  83. {
  84. double f, x, x2, y, y2, rn, t;
  85. double d;
  86. x = fabs (2.0 * creal (z));
  87. y = fabs (2.0 * cimag(z));
  88. x = _redupi(x);
  89. x = x * x;
  90. y = y * y;
  91. x2 = 1.0;
  92. y2 = 1.0;
  93. f = 1.0;
  94. rn = 0.0;
  95. d = 0.0;
  96. do {
  97. rn += 1.0;
  98. f *= rn;
  99. rn += 1.0;
  100. f *= rn;
  101. x2 *= x;
  102. y2 *= y;
  103. t = y2 + x2;
  104. t /= f;
  105. d += t;
  106. rn += 1.0;
  107. f *= rn;
  108. rn += 1.0;
  109. f *= rn;
  110. x2 *= x;
  111. y2 *= y;
  112. t = y2 - x2;
  113. t /= f;
  114. d += t;
  115. }
  116. while (fabs(t/d) > MACHEP)
  117. ;
  118. return (d);
  119. }
  120. double complex
  121. ctan(double complex z)
  122. {
  123. double complex w;
  124. double d;
  125. d = cos (2.0 * creal (z)) + cosh (2.0 * cimag (z));
  126. if (fabs(d) < 0.25)
  127. d = _ctans (z);
  128. if (d == 0.0) {
  129. /*mtherr ("ctan", OVERFLOW);*/
  130. w = MAXNUM + MAXNUM * I;
  131. return (w);
  132. }
  133. w = sin (2.0 * creal(z)) / d + (sinh (2.0 * cimag(z)) / d) * I;
  134. return (w);
  135. }
  136. #if LDBL_MANT_DIG == DBL_MANT_DIG
  137. __strong_alias(ctanl, ctan);
  138. #endif /* LDBL_MANT_DIG == DBL_MANT_DIG */