zbesi.f 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. SUBROUTINE ZBESI(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
  2. C***BEGIN PROLOGUE ZBESI
  3. C***DATE WRITTEN 830501 (YYMMDD)
  4. C***REVISION DATE 890801 (YYMMDD)
  5. C***CATEGORY NO. B5K
  6. C***KEYWORDS I-BESSEL FUNCTION,COMPLEX BESSEL FUNCTION,
  7. C MODIFIED BESSEL FUNCTION OF THE FIRST KIND
  8. C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
  9. C***PURPOSE TO COMPUTE I-BESSEL FUNCTIONS OF COMPLEX ARGUMENT
  10. C***DESCRIPTION
  11. C
  12. C ***A DOUBLE PRECISION ROUTINE***
  13. C ON KODE=1, ZBESI COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
  14. C BESSEL FUNCTIONS CY(J)=I(FNU+J-1,Z) FOR REAL, NONNEGATIVE
  15. C ORDERS FNU+J-1, J=1,...,N AND COMPLEX Z IN THE CUT PLANE
  16. C -PI.LT.ARG(Z).LE.PI. ON KODE=2, ZBESI RETURNS THE SCALED
  17. C FUNCTIONS
  18. C
  19. C CY(J)=EXP(-ABS(X))*I(FNU+J-1,Z) J = 1,...,N , X=REAL(Z)
  20. C
  21. C WITH THE EXPONENTIAL GROWTH REMOVED IN BOTH THE LEFT AND
  22. C RIGHT HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
  23. C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
  24. C (REF. 1).
  25. C
  26. C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
  27. C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
  28. C FNU - ORDER OF INITIAL I FUNCTION, FNU.GE.0.0D0
  29. C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
  30. C KODE= 1 RETURNS
  31. C CY(J)=I(FNU+J-1,Z), J=1,...,N
  32. C = 2 RETURNS
  33. C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)), J=1,...,N
  34. C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
  35. C
  36. C OUTPUT CYR,CYI ARE DOUBLE PRECISION
  37. C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
  38. C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
  39. C CY(J)=I(FNU+J-1,Z) OR
  40. C CY(J)=I(FNU+J-1,Z)*EXP(-ABS(X)) J=1,...,N
  41. C DEPENDING ON KODE, X=REAL(Z)
  42. C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
  43. C NZ= 0 , NORMAL RETURN
  44. C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET TO ZERO
  45. C TO UNDERFLOW, CY(J)=CMPLX(0.0D0,0.0D0)
  46. C J = N-NZ+1,...,N
  47. C IERR - ERROR FLAG
  48. C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
  49. C IERR=1, INPUT ERROR - NO COMPUTATION
  50. C IERR=2, OVERFLOW - NO COMPUTATION, REAL(Z) TOO
  51. C LARGE ON KODE=1
  52. C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
  53. C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
  54. C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
  55. C ACCURACY
  56. C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
  57. C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
  58. C CANCE BY ARGUMENT REDUCTION
  59. C IERR=5, ERROR - NO COMPUTATION,
  60. C ALGORITHM TERMINATION CONDITION NOT MET
  61. C
  62. C***LONG DESCRIPTION
  63. C
  64. C THE COMPUTATION IS CARRIED OUT BY THE POWER SERIES FOR
  65. C SMALL CABS(Z), THE ASYMPTOTIC EXPANSION FOR LARGE CABS(Z),
  66. C THE MILLER ALGORITHM NORMALIZED BY THE WRONSKIAN AND A
  67. C NEUMANN SERIES FOR IMTERMEDIATE MAGNITUDES, AND THE
  68. C UNIFORM ASYMPTOTIC EXPANSIONS FOR I(FNU,Z) AND J(FNU,Z)
  69. C FOR LARGE ORDERS. BACKWARD RECURRENCE IS USED TO GENERATE
  70. C SEQUENCES OR REDUCE ORDERS WHEN NECESSARY.
  71. C
  72. C THE CALCULATIONS ABOVE ARE DONE IN THE RIGHT HALF PLANE AND
  73. C CONTINUED INTO THE LEFT HALF PLANE BY THE FORMULA
  74. C
  75. C I(FNU,Z*EXP(M*PI)) = EXP(M*PI*FNU)*I(FNU,Z) REAL(Z).GT.0.0
  76. C M = +I OR -I, I**2=-1
  77. C
  78. C FOR NEGATIVE ORDERS,THE FORMULA
  79. C
  80. C I(-FNU,Z) = I(FNU,Z) + (2/PI)*SIN(PI*FNU)*K(FNU,Z)
  81. C
  82. C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
  83. C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
  84. C INTEGER,THE MAGNITUDE OF I(-FNU,Z)=I(FNU,Z) IS A LARGE
  85. C NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
  86. C K(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
  87. C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
  88. C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
  89. C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
  90. C LARGE MEANS FNU.GT.CABS(Z).
  91. C
  92. C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
  93. C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
  94. C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
  95. C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
  96. C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
  97. C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
  98. C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
  99. C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
  100. C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
  101. C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
  102. C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
  103. C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
  104. C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
  105. C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
  106. C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
  107. C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
  108. C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
  109. C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
  110. C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
  111. C
  112. C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
  113. C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
  114. C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
  115. C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
  116. C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
  117. C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
  118. C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
  119. C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
  120. C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
  121. C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
  122. C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
  123. C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
  124. C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
  125. C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
  126. C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
  127. C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
  128. C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
  129. C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
  130. C OR -PI/2+P.
  131. C
  132. C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
  133. C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
  134. C COMMERCE, 1955.
  135. C
  136. C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
  137. C BY D. E. AMOS, SAND83-0083, MAY, 1983.
  138. C
  139. C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
  140. C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
  141. C
  142. C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
  143. C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
  144. C 1018, MAY, 1985
  145. C
  146. C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
  147. C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
  148. C MATH. SOFTWARE, 1986
  149. C
  150. C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
  151. C***END PROLOGUE ZBESI
  152. C COMPLEX CONE,CSGN,CW,CY,CZERO,Z,ZN
  153. DOUBLE PRECISION AA, ALIM, ARG, CONEI, CONER, CSGNI, CSGNR, CYI,
  154. * CYR, DIG, ELIM, FNU, FNUL, PI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR,
  155. * ZR, D1MACH, AZ, BB, FN, ZABS, ASCLE, RTOL, ATOL, STI
  156. INTEGER I, IERR, INU, K, KODE, K1,K2,N,NZ,NN, I1MACH
  157. DIMENSION CYR(N), CYI(N)
  158. DATA PI /3.14159265358979324D0/
  159. DATA CONER, CONEI /1.0D0,0.0D0/
  160. C
  161. C***FIRST EXECUTABLE STATEMENT ZBESI
  162. IERR = 0
  163. NZ=0
  164. IF (FNU.LT.0.0D0) IERR=1
  165. IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
  166. IF (N.LT.1) IERR=1
  167. IF (IERR.NE.0) RETURN
  168. C-----------------------------------------------------------------------
  169. C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
  170. C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
  171. C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
  172. C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
  173. C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
  174. C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
  175. C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
  176. C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
  177. C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
  178. C-----------------------------------------------------------------------
  179. TOL = DMAX1(D1MACH(4),1.0D-18)
  180. K1 = I1MACH(15)
  181. K2 = I1MACH(16)
  182. R1M5 = D1MACH(5)
  183. K = MIN0(IABS(K1),IABS(K2))
  184. ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
  185. K1 = I1MACH(14) - 1
  186. AA = R1M5*DBLE(FLOAT(K1))
  187. DIG = DMIN1(AA,18.0D0)
  188. AA = AA*2.303D0
  189. ALIM = ELIM + DMAX1(-AA,-41.45D0)
  190. RL = 1.2D0*DIG + 3.0D0
  191. FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
  192. C-----------------------------------------------------------------------------
  193. C TEST FOR PROPER RANGE
  194. C-----------------------------------------------------------------------
  195. AZ = ZABS(COMPLEX(ZR,ZI))
  196. FN = FNU+DBLE(FLOAT(N-1))
  197. AA = 0.5D0/TOL
  198. BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
  199. AA = DMIN1(AA,BB)
  200. IF (AZ.GT.AA) GO TO 260
  201. IF (FN.GT.AA) GO TO 260
  202. AA = DSQRT(AA)
  203. IF (AZ.GT.AA) IERR=3
  204. IF (FN.GT.AA) IERR=3
  205. ZNR = ZR
  206. ZNI = ZI
  207. CSGNR = CONER
  208. CSGNI = CONEI
  209. IF (ZR.GE.0.0D0) GO TO 40
  210. ZNR = -ZR
  211. ZNI = -ZI
  212. C-----------------------------------------------------------------------
  213. C CALCULATE CSGN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
  214. C WHEN FNU IS LARGE
  215. C-----------------------------------------------------------------------
  216. INU = INT(SNGL(FNU))
  217. ARG = (FNU-DBLE(FLOAT(INU)))*PI
  218. IF (ZI.LT.0.0D0) ARG = -ARG
  219. CSGNR = DCOS(ARG)
  220. CSGNI = DSIN(ARG)
  221. IF (MOD(INU,2).EQ.0) GO TO 40
  222. CSGNR = -CSGNR
  223. CSGNI = -CSGNI
  224. 40 CONTINUE
  225. CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
  226. * ELIM, ALIM)
  227. IF (NZ.LT.0) GO TO 120
  228. IF (ZR.GE.0.0D0) RETURN
  229. C-----------------------------------------------------------------------
  230. C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE
  231. C-----------------------------------------------------------------------
  232. NN = N - NZ
  233. IF (NN.EQ.0) RETURN
  234. RTOL = 1.0D0/TOL
  235. ASCLE = D1MACH(1)*RTOL*1.0D+3
  236. DO 50 I=1,NN
  237. C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
  238. C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
  239. C CYR(I) = STR
  240. AA = CYR(I)
  241. BB = CYI(I)
  242. ATOL = 1.0D0
  243. IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
  244. AA = AA*RTOL
  245. BB = BB*RTOL
  246. ATOL = TOL
  247. 55 CONTINUE
  248. STR = AA*CSGNR - BB*CSGNI
  249. STI = AA*CSGNI + BB*CSGNR
  250. CYR(I) = STR*ATOL
  251. CYI(I) = STI*ATOL
  252. CSGNR = -CSGNR
  253. CSGNI = -CSGNI
  254. 50 CONTINUE
  255. RETURN
  256. 120 CONTINUE
  257. IF(NZ.EQ.(-2)) GO TO 130
  258. NZ = 0
  259. IERR=2
  260. RETURN
  261. 130 CONTINUE
  262. NZ=0
  263. IERR=5
  264. RETURN
  265. 260 CONTINUE
  266. NZ=0
  267. IERR=4
  268. RETURN
  269. END