b_log.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. /*
  2. * Copyright (c) 1992, 1993
  3. * The Regents of the University of California. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. Neither the name of the University nor the names of its contributors
  14. * may be used to endorse or promote products derived from this software
  15. * without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  27. * SUCH DAMAGE.
  28. */
  29. /* @(#)log.c 8.2 (Berkeley) 11/30/93 */
  30. #include "openlibm_compat.h"
  31. //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.9 2008/02/22 02:26:51 das Exp $");
  32. #include <openlibm_math.h>
  33. #include "mathimpl.h"
  34. /* Table-driven natural logarithm.
  35. *
  36. * This code was derived, with minor modifications, from:
  37. * Peter Tang, "Table-Driven Implementation of the
  38. * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
  39. * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
  40. *
  41. * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
  42. * where F = j/128 for j an integer in [0, 128].
  43. *
  44. * log(2^m) = log2_hi*m + log2_tail*m
  45. * since m is an integer, the dominant term is exact.
  46. * m has at most 10 digits (for subnormal numbers),
  47. * and log2_hi has 11 trailing zero bits.
  48. *
  49. * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
  50. * logF_hi[] + 512 is exact.
  51. *
  52. * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
  53. * the leading term is calculated to extra precision in two
  54. * parts, the larger of which adds exactly to the dominant
  55. * m and F terms.
  56. * There are two cases:
  57. * 1. when m, j are non-zero (m | j), use absolute
  58. * precision for the leading term.
  59. * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
  60. * In this case, use a relative precision of 24 bits.
  61. * (This is done differently in the original paper)
  62. *
  63. * Special cases:
  64. * 0 return signalling -Inf
  65. * neg return signalling NaN
  66. * +Inf return +Inf
  67. */
  68. #define N 128
  69. /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
  70. * Used for generation of extend precision logarithms.
  71. * The constant 35184372088832 is 2^45, so the divide is exact.
  72. * It ensures correct reading of logF_head, even for inaccurate
  73. * decimal-to-binary conversion routines. (Everybody gets the
  74. * right answer for integers less than 2^53.)
  75. * Values for log(F) were generated using error < 10^-57 absolute
  76. * with the bc -l package.
  77. */
  78. static double A1 = .08333333333333178827;
  79. static double A2 = .01250000000377174923;
  80. static double A3 = .002232139987919447809;
  81. static double A4 = .0004348877777076145742;
  82. static double logF_head[N+1] = {
  83. 0.,
  84. .007782140442060381246,
  85. .015504186535963526694,
  86. .023167059281547608406,
  87. .030771658666765233647,
  88. .038318864302141264488,
  89. .045809536031242714670,
  90. .053244514518837604555,
  91. .060624621816486978786,
  92. .067950661908525944454,
  93. .075223421237524235039,
  94. .082443669210988446138,
  95. .089612158689760690322,
  96. .096729626458454731618,
  97. .103796793681567578460,
  98. .110814366340264314203,
  99. .117783035656430001836,
  100. .124703478501032805070,
  101. .131576357788617315236,
  102. .138402322859292326029,
  103. .145182009844575077295,
  104. .151916042025732167530,
  105. .158605030176659056451,
  106. .165249572895390883786,
  107. .171850256926518341060,
  108. .178407657472689606947,
  109. .184922338493834104156,
  110. .191394852999565046047,
  111. .197825743329758552135,
  112. .204215541428766300668,
  113. .210564769107350002741,
  114. .216873938300523150246,
  115. .223143551314024080056,
  116. .229374101064877322642,
  117. .235566071312860003672,
  118. .241719936886966024758,
  119. .247836163904594286577,
  120. .253915209980732470285,
  121. .259957524436686071567,
  122. .265963548496984003577,
  123. .271933715484010463114,
  124. .277868451003087102435,
  125. .283768173130738432519,
  126. .289633292582948342896,
  127. .295464212893421063199,
  128. .301261330578199704177,
  129. .307025035294827830512,
  130. .312755710004239517729,
  131. .318453731118097493890,
  132. .324119468654316733591,
  133. .329753286372579168528,
  134. .335355541920762334484,
  135. .340926586970454081892,
  136. .346466767346100823488,
  137. .351976423156884266063,
  138. .357455888922231679316,
  139. .362905493689140712376,
  140. .368325561158599157352,
  141. .373716409793814818840,
  142. .379078352934811846353,
  143. .384411698910298582632,
  144. .389716751140440464951,
  145. .394993808240542421117,
  146. .400243164127459749579,
  147. .405465108107819105498,
  148. .410659924985338875558,
  149. .415827895143593195825,
  150. .420969294644237379543,
  151. .426084395310681429691,
  152. .431173464818130014464,
  153. .436236766774527495726,
  154. .441274560805140936281,
  155. .446287102628048160113,
  156. .451274644139630254358,
  157. .456237433481874177232,
  158. .461175715122408291790,
  159. .466089729924533457960,
  160. .470979715219073113985,
  161. .475845904869856894947,
  162. .480688529345570714212,
  163. .485507815781602403149,
  164. .490303988045525329653,
  165. .495077266798034543171,
  166. .499827869556611403822,
  167. .504556010751912253908,
  168. .509261901790523552335,
  169. .513945751101346104405,
  170. .518607764208354637958,
  171. .523248143765158602036,
  172. .527867089620485785417,
  173. .532464798869114019908,
  174. .537041465897345915436,
  175. .541597282432121573947,
  176. .546132437597407260909,
  177. .550647117952394182793,
  178. .555141507540611200965,
  179. .559615787935399566777,
  180. .564070138285387656651,
  181. .568504735352689749561,
  182. .572919753562018740922,
  183. .577315365035246941260,
  184. .581691739635061821900,
  185. .586049045003164792433,
  186. .590387446602107957005,
  187. .594707107746216934174,
  188. .599008189645246602594,
  189. .603290851438941899687,
  190. .607555250224322662688,
  191. .611801541106615331955,
  192. .616029877215623855590,
  193. .620240409751204424537,
  194. .624433288012369303032,
  195. .628608659422752680256,
  196. .632766669570628437213,
  197. .636907462236194987781,
  198. .641031179420679109171,
  199. .645137961373620782978,
  200. .649227946625615004450,
  201. .653301272011958644725,
  202. .657358072709030238911,
  203. .661398482245203922502,
  204. .665422632544505177065,
  205. .669430653942981734871,
  206. .673422675212350441142,
  207. .677398823590920073911,
  208. .681359224807238206267,
  209. .685304003098281100392,
  210. .689233281238557538017,
  211. .693147180560117703862
  212. };
  213. static double logF_tail[N+1] = {
  214. 0.,
  215. -.00000000000000543229938420049,
  216. .00000000000000172745674997061,
  217. -.00000000000001323017818229233,
  218. -.00000000000001154527628289872,
  219. -.00000000000000466529469958300,
  220. .00000000000005148849572685810,
  221. -.00000000000002532168943117445,
  222. -.00000000000005213620639136504,
  223. -.00000000000001819506003016881,
  224. .00000000000006329065958724544,
  225. .00000000000008614512936087814,
  226. -.00000000000007355770219435028,
  227. .00000000000009638067658552277,
  228. .00000000000007598636597194141,
  229. .00000000000002579999128306990,
  230. -.00000000000004654729747598444,
  231. -.00000000000007556920687451336,
  232. .00000000000010195735223708472,
  233. -.00000000000017319034406422306,
  234. -.00000000000007718001336828098,
  235. .00000000000010980754099855238,
  236. -.00000000000002047235780046195,
  237. -.00000000000008372091099235912,
  238. .00000000000014088127937111135,
  239. .00000000000012869017157588257,
  240. .00000000000017788850778198106,
  241. .00000000000006440856150696891,
  242. .00000000000016132822667240822,
  243. -.00000000000007540916511956188,
  244. -.00000000000000036507188831790,
  245. .00000000000009120937249914984,
  246. .00000000000018567570959796010,
  247. -.00000000000003149265065191483,
  248. -.00000000000009309459495196889,
  249. .00000000000017914338601329117,
  250. -.00000000000001302979717330866,
  251. .00000000000023097385217586939,
  252. .00000000000023999540484211737,
  253. .00000000000015393776174455408,
  254. -.00000000000036870428315837678,
  255. .00000000000036920375082080089,
  256. -.00000000000009383417223663699,
  257. .00000000000009433398189512690,
  258. .00000000000041481318704258568,
  259. -.00000000000003792316480209314,
  260. .00000000000008403156304792424,
  261. -.00000000000034262934348285429,
  262. .00000000000043712191957429145,
  263. -.00000000000010475750058776541,
  264. -.00000000000011118671389559323,
  265. .00000000000037549577257259853,
  266. .00000000000013912841212197565,
  267. .00000000000010775743037572640,
  268. .00000000000029391859187648000,
  269. -.00000000000042790509060060774,
  270. .00000000000022774076114039555,
  271. .00000000000010849569622967912,
  272. -.00000000000023073801945705758,
  273. .00000000000015761203773969435,
  274. .00000000000003345710269544082,
  275. -.00000000000041525158063436123,
  276. .00000000000032655698896907146,
  277. -.00000000000044704265010452446,
  278. .00000000000034527647952039772,
  279. -.00000000000007048962392109746,
  280. .00000000000011776978751369214,
  281. -.00000000000010774341461609578,
  282. .00000000000021863343293215910,
  283. .00000000000024132639491333131,
  284. .00000000000039057462209830700,
  285. -.00000000000026570679203560751,
  286. .00000000000037135141919592021,
  287. -.00000000000017166921336082431,
  288. -.00000000000028658285157914353,
  289. -.00000000000023812542263446809,
  290. .00000000000006576659768580062,
  291. -.00000000000028210143846181267,
  292. .00000000000010701931762114254,
  293. .00000000000018119346366441110,
  294. .00000000000009840465278232627,
  295. -.00000000000033149150282752542,
  296. -.00000000000018302857356041668,
  297. -.00000000000016207400156744949,
  298. .00000000000048303314949553201,
  299. -.00000000000071560553172382115,
  300. .00000000000088821239518571855,
  301. -.00000000000030900580513238244,
  302. -.00000000000061076551972851496,
  303. .00000000000035659969663347830,
  304. .00000000000035782396591276383,
  305. -.00000000000046226087001544578,
  306. .00000000000062279762917225156,
  307. .00000000000072838947272065741,
  308. .00000000000026809646615211673,
  309. -.00000000000010960825046059278,
  310. .00000000000002311949383800537,
  311. -.00000000000058469058005299247,
  312. -.00000000000002103748251144494,
  313. -.00000000000023323182945587408,
  314. -.00000000000042333694288141916,
  315. -.00000000000043933937969737844,
  316. .00000000000041341647073835565,
  317. .00000000000006841763641591466,
  318. .00000000000047585534004430641,
  319. .00000000000083679678674757695,
  320. -.00000000000085763734646658640,
  321. .00000000000021913281229340092,
  322. -.00000000000062242842536431148,
  323. -.00000000000010983594325438430,
  324. .00000000000065310431377633651,
  325. -.00000000000047580199021710769,
  326. -.00000000000037854251265457040,
  327. .00000000000040939233218678664,
  328. .00000000000087424383914858291,
  329. .00000000000025218188456842882,
  330. -.00000000000003608131360422557,
  331. -.00000000000050518555924280902,
  332. .00000000000078699403323355317,
  333. -.00000000000067020876961949060,
  334. .00000000000016108575753932458,
  335. .00000000000058527188436251509,
  336. -.00000000000035246757297904791,
  337. -.00000000000018372084495629058,
  338. .00000000000088606689813494916,
  339. .00000000000066486268071468700,
  340. .00000000000063831615170646519,
  341. .00000000000025144230728376072,
  342. -.00000000000017239444525614834
  343. };
  344. #if 0
  345. DLLEXPORT double
  346. #ifdef _ANSI_SOURCE
  347. log(double x)
  348. #else
  349. log(x) double x;
  350. #endif
  351. {
  352. int m, j;
  353. double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
  354. volatile double u1;
  355. /* Catch special cases */
  356. if (x <= 0)
  357. if (x == zero) /* log(0) = -Inf */
  358. return (-one/zero);
  359. else /* log(neg) = NaN */
  360. return (zero/zero);
  361. else if (!finite(x))
  362. return (x+x); /* x = NaN, Inf */
  363. /* Argument reduction: 1 <= g < 2; x/2^m = g; */
  364. /* y = F*(1 + f/F) for |f| <= 2^-8 */
  365. m = logb(x);
  366. g = ldexp(x, -m);
  367. if (m == -1022) {
  368. j = logb(g), m += j;
  369. g = ldexp(g, -j);
  370. }
  371. j = N*(g-1) + .5;
  372. F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
  373. f = g - F;
  374. /* Approximate expansion for log(1+f/F) ~= u + q */
  375. g = 1/(2*F+f);
  376. u = 2*f*g;
  377. v = u*u;
  378. q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
  379. /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
  380. * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
  381. * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
  382. */
  383. if (m | j)
  384. u1 = u + 513, u1 -= 513;
  385. /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
  386. * u1 = u to 24 bits.
  387. */
  388. else
  389. u1 = u, TRUNC(u1);
  390. u2 = (2.0*(f - F*u1) - u1*f) * g;
  391. /* u1 + u2 = 2f/(2F+f) to extra precision. */
  392. /* log(x) = log(2^m*F*(1+f/F)) = */
  393. /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
  394. /* (exact) + (tiny) */
  395. u1 += m*logF_head[N] + logF_head[j]; /* exact */
  396. u2 = (u2 + logF_tail[j]) + q; /* tiny */
  397. u2 += logF_tail[N]*m;
  398. return (u1 + u2);
  399. }
  400. #endif
  401. /*
  402. * Extra precision variant, returning struct {double a, b;};
  403. * log(x) = a+b to 63 bits, with a rounded to 26 bits.
  404. */
  405. struct Double
  406. #ifdef _ANSI_SOURCE
  407. __log__D(double x)
  408. #else
  409. __log__D(x) double x;
  410. #endif
  411. {
  412. int m, j;
  413. double F, f, g, q, u, v, u2;
  414. volatile double u1;
  415. struct Double r;
  416. /* Argument reduction: 1 <= g < 2; x/2^m = g; */
  417. /* y = F*(1 + f/F) for |f| <= 2^-8 */
  418. m = logb(x);
  419. g = ldexp(x, -m);
  420. if (m == -1022) {
  421. j = logb(g), m += j;
  422. g = ldexp(g, -j);
  423. }
  424. j = N*(g-1) + .5;
  425. F = (1.0/N) * j + 1;
  426. f = g - F;
  427. g = 1/(2*F+f);
  428. u = 2*f*g;
  429. v = u*u;
  430. q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
  431. if (m | j)
  432. u1 = u + 513, u1 -= 513;
  433. else
  434. u1 = u, TRUNC(u1);
  435. u2 = (2.0*(f - F*u1) - u1*f) * g;
  436. u1 += m*logF_head[N] + logF_head[j];
  437. u2 += logF_tail[j]; u2 += q;
  438. u2 += logF_tail[N]*m;
  439. r.a = u1 + u2; /* Only difference is here */
  440. TRUNC(r.a);
  441. r.b = (u1 - r.a) + u2;
  442. return (r);
  443. }