1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- /* From: @(#)k_sin.c 1.3 95/01/18 */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/ld128/k_sinl.c,v 1.1 2008/02/17 07:32:31 das Exp $");
- /*
- * ld128 version of k_sin.c. See ../src/k_sin.c for most comments.
- */
- #include "math_private.h"
- static const double
- half = 0.5;
- /*
- * Domain [-0.7854, 0.7854], range ~[-1.53e-37, 1.659e-37]
- * |sin(x)/x - s(x)| < 2**-122.1
- *
- * See ../ld80/k_cosl.c for more details about the polynomial.
- */
- static const long double
- S1 = -0.16666666666666666666666666666666666606732416116558L,
- S2 = 0.0083333333333333333333333333333331135404851288270047L,
- S3 = -0.00019841269841269841269841269839935785325638310428717L,
- S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
- S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
- S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
- S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
- S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
- static const double
- S9 = -0.82206352458348947812512122163446202498005154296863e-17,
- S10 = 0.19572940011906109418080609928334380560135358385256e-19,
- S11 = -0.38680813379701966970673724299207480965452616911420e-22,
- S12 = 0.64038150078671872796678569586315881020659912139412e-25;
- DLLEXPORT long double
- __kernel_sinl(long double x, long double y, int iy)
- {
- long double z,r,v;
- z = x*x;
- v = z*x;
- r = S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+
- z*(S9+z*(S10+z*(S11+z*S12)))))))));
- if(iy==0) return x+v*(S1+z*r);
- else return x-((z*(half*y-v*r)-y)-v*S1);
- }
|