123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- /* $OpenBSD: e_log2l.c,v 1.2 2013/11/12 20:35:19 martynas Exp $ */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* log2l.c
- *
- * Base 2 logarithm, long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, log2l();
- *
- * y = log2l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base 2 logarithm of x.
- *
- * The argument is separated into its exponent and fractional
- * parts. If the exponent is between -1 and +1, the (natural)
- * logarithm of the fraction is approximated by
- *
- * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
- *
- * Otherwise, setting z = 2(x-1)/x+1),
- *
- * log(x) = z + z**3 P(z)/Q(z).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0.5, 2.0 30000 9.8e-20 2.7e-20
- * IEEE exp(+-10000) 70000 5.4e-20 2.3e-20
- *
- * In the tests over the interval exp(+-10000), the logarithms
- * of the random arguments were uniformly distributed over
- * [-10000, +10000].
- *
- * ERROR MESSAGES:
- *
- * log singularity: x = 0; returns -INFINITY
- * log domain: x < 0; returns NAN
- */
- #include <openlibm_math.h>
- #include "math_private.h"
- /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 6.2e-22
- */
- static long double P[] = {
- 4.9962495940332550844739E-1L,
- 1.0767376367209449010438E1L,
- 7.7671073698359539859595E1L,
- 2.5620629828144409632571E2L,
- 4.2401812743503691187826E2L,
- 3.4258224542413922935104E2L,
- 1.0747524399916215149070E2L,
- };
- static long double Q[] = {
- /* 1.0000000000000000000000E0,*/
- 2.3479774160285863271658E1L,
- 1.9444210022760132894510E2L,
- 7.7952888181207260646090E2L,
- 1.6911722418503949084863E3L,
- 2.0307734695595183428202E3L,
- 1.2695660352705325274404E3L,
- 3.2242573199748645407652E2L,
- };
- /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
- * where z = 2(x-1)/(x+1)
- * 1/sqrt(2) <= x < sqrt(2)
- * Theoretical peak relative error = 6.16e-22
- */
- static long double R[4] = {
- 1.9757429581415468984296E-3L,
- -7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
- -3.5717684488096787370998E1L,
- };
- static long double S[4] = {
- /* 1.00000000000000000000E0L,*/
- -2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
- -4.2861221385716144629696E2L,
- };
- /* log2(e) - 1 */
- #define LOG2EA 4.4269504088896340735992e-1L
- #define SQRTH 0.70710678118654752440L
- long double
- log2l(long double x)
- {
- volatile long double z;
- long double y;
- int e;
- if( isnan(x) )
- return(x);
- if( x == INFINITY )
- return(x);
- /* Test for domain */
- if( x <= 0.0L )
- {
- if( x == 0.0L )
- return( -INFINITY );
- else
- return( NAN );
- }
- /* separate mantissa from exponent */
- /* Note, frexp is used so that denormal numbers
- * will be handled properly.
- */
- x = frexpl( x, &e );
- /* logarithm using log(x) = z + z**3 P(z)/Q(z),
- * where z = 2(x-1)/x+1)
- */
- if( (e > 2) || (e < -2) )
- {
- if( x < SQRTH )
- { /* 2( 2x-1 )/( 2x+1 ) */
- e -= 1;
- z = x - 0.5L;
- y = 0.5L * z + 0.5L;
- }
- else
- { /* 2 (x-1)/(x+1) */
- z = x - 0.5L;
- z -= 0.5L;
- y = 0.5L * x + 0.5L;
- }
- x = z / y;
- z = x*x;
- y = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
- goto done;
- }
- /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
- if( x < SQRTH )
- {
- e -= 1;
- x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */
- }
- else
- {
- x = x - 1.0L;
- }
- z = x*x;
- y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 7 ) );
- y = y - ldexpl( z, -1 ); /* -0.5x^2 + ... */
- done:
- /* Multiply log of fraction by log2(e)
- * and base 2 exponent by 1
- *
- * ***CAUTION***
- *
- * This sequence of operations is critical and it may
- * be horribly defeated by some compiler optimizers.
- */
- z = y * LOG2EA;
- z += x * LOG2EA;
- z += y;
- z += x;
- z += e;
- return( z );
- }
|