s_logl.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. /*-
  2. * Copyright (c) 2007-2013 Bruce D. Evans
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice unmodified, this list of conditions, and the following
  10. * disclaimer.
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in the
  13. * documentation and/or other materials provided with the distribution.
  14. *
  15. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  16. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  17. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  18. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  19. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  20. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  24. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. #include <openlibm_compat.h>
  27. __FBSDID("$FreeBSD$");
  28. /**
  29. * Implementation of the natural logarithm of x for Intel 80-bit format.
  30. *
  31. * First decompose x into its base 2 representation:
  32. *
  33. * log(x) = log(X * 2**k), where X is in [1, 2)
  34. * = log(X) + k * log(2).
  35. *
  36. * Let X = X_i + e, where X_i is the center of one of the intervals
  37. * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
  38. * and X is in this interval. Then
  39. *
  40. * log(X) = log(X_i + e)
  41. * = log(X_i * (1 + e / X_i))
  42. * = log(X_i) + log(1 + e / X_i).
  43. *
  44. * The values log(X_i) are tabulated below. Let d = e / X_i and use
  45. *
  46. * log(1 + d) = p(d)
  47. *
  48. * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
  49. * suitably high degree.
  50. *
  51. * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
  52. * sometimes (if |k| is not large) the first term in p(d) must be evaluated
  53. * and added up in extra precision. Extra precision is not needed for the
  54. * rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final
  55. * error is controlled mainly by the error in the second term in p(d). The
  56. * error in this term itself is at most 0.5 ulps from the d*d operation in
  57. * it. The error in this term relative to the first term is thus at most
  58. * 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of
  59. * at most twice this at the point of the final rounding step. Thus the
  60. * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive
  61. * testing of a float variant of this function showed a maximum final error
  62. * of 0.5008 ulps. Non-exhaustive testing of a double variant of this
  63. * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
  64. *
  65. * We made the maximum of |d| (and thus the total relative error and the
  66. * degree of p(d)) small by using a large number of intervals. Using
  67. * centers of intervals instead of endpoints reduces this maximum by a
  68. * factor of 2 for a given number of intervals. p(d) is special only
  69. * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
  70. * naturally. The most accurate minimax polynomial of a given degree might
  71. * be different, but then we wouldn't want it since we would have to do
  72. * extra work to avoid roundoff error (especially for P0*d instead of d).
  73. */
  74. #ifdef DEBUG
  75. #include <assert.h>
  76. #include <openlibm_fenv.h>
  77. #endif
  78. #ifdef __i386__
  79. #include <ieeefp.h>
  80. #endif
  81. #include "fpmath.h"
  82. #include <openlibm_math.h>
  83. #define i386_SSE_GOOD
  84. #ifndef NO_STRUCT_RETURN
  85. #define STRUCT_RETURN
  86. #endif
  87. #include "math_private.h"
  88. #if !defined(NO_UTAB) && !defined(NO_UTABL)
  89. #define USE_UTAB
  90. #endif
  91. /*
  92. * Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]:
  93. * |log(1 + d)/d - p(d)| < 2**-70.7
  94. */
  95. static const double
  96. P2 = -0.5,
  97. P3 = 3.3333333333333359e-1, /* 0x1555555555555a.0p-54 */
  98. P4 = -2.5000000000004424e-1, /* -0x1000000000031d.0p-54 */
  99. P5 = 1.9999999992970016e-1, /* 0x1999999972f3c7.0p-55 */
  100. P6 = -1.6666666072191585e-1, /* -0x15555548912c09.0p-55 */
  101. P7 = 1.4286227413310518e-1, /* 0x12494f9d9def91.0p-55 */
  102. P8 = -1.2518388626763144e-1; /* -0x1006068cc0b97c.0p-55 */
  103. static volatile const double zero = 0;
  104. #define INTERVALS 128
  105. #define LOG2_INTERVALS 7
  106. #define TSIZE (INTERVALS + 1)
  107. #define G(i) (T[(i)].G)
  108. #define F_hi(i) (T[(i)].F_hi)
  109. #define F_lo(i) (T[(i)].F_lo)
  110. #define ln2_hi F_hi(TSIZE - 1)
  111. #define ln2_lo F_lo(TSIZE - 1)
  112. #define E(i) (U[(i)].E)
  113. #define H(i) (U[(i)].H)
  114. static const struct {
  115. float G; /* 1/(1 + i/128) rounded to 8/9 bits */
  116. float F_hi; /* log(1 / G_i) rounded (see below) */
  117. double F_lo; /* next 53 bits for log(1 / G_i) */
  118. } T[TSIZE] = {
  119. /*
  120. * ln2_hi and each F_hi(i) are rounded to a number of bits that
  121. * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
  122. *
  123. * The last entry (for X just below 2) is used to define ln2_hi
  124. * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
  125. * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
  126. * This is needed for accuracy when x is just below 1. (To avoid
  127. * special cases, such x are "reduced" strangely to X just below
  128. * 2 and dk = -1, and then the exact cancellation is needed
  129. * because any the error from any non-exactness would be too
  130. * large).
  131. *
  132. * We want to share this table between double precision and ld80,
  133. * so the relevant range of dk is the larger one of ld80
  134. * ([-16445, 16383]) and the relevant exactness requirement is
  135. * the stricter one of double precision. The maximum number of
  136. * bits in F_hi(i) that works is very dependent on i but has
  137. * a minimum of 33. We only need about 12 bits in F_hi(i) for
  138. * it to provide enough extra precision in double precision (11
  139. * more than that are required for ld80).
  140. *
  141. * We round F_hi(i) to 24 bits so that it can have type float,
  142. * mainly to minimize the size of the table. Using all 24 bits
  143. * in a float for it automatically satisfies the above constraints.
  144. */
  145. 0x800000.0p-23, 0, 0,
  146. 0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6675.0p-84,
  147. 0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83718.0p-84,
  148. 0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173698.0p-83,
  149. 0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e79.0p-82,
  150. 0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82,
  151. 0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a1076.0p-83,
  152. 0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb9589.0p-82,
  153. 0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c5.0p-91,
  154. 0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560e.0p-81,
  155. 0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d503.0p-82,
  156. 0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83,
  157. 0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da9a.0p-81,
  158. 0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83,
  159. 0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251af0.0p-85,
  160. 0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d5.0p-84,
  161. 0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e676.0p-81,
  162. 0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f42.0p-82,
  163. 0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6b00.0p-80,
  164. 0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83,
  165. 0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82,
  166. 0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80,
  167. 0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c47.0p-82,
  168. 0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e569.0p-81,
  169. 0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba936770.0p-84,
  170. 0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d32.0p-80,
  171. 0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b7.0p-81,
  172. 0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06.0p-80,
  173. 0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82,
  174. 0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d6866.0p-81,
  175. 0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae55.0p-80,
  176. 0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc45954.0p-81,
  177. 0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d.0p-81,
  178. 0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df842.0p-85,
  179. 0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe.0p-87,
  180. 0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa69.0p-81,
  181. 0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb3283.0p-80,
  182. 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e.0p-79,
  183. 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f46.0p-79,
  184. 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a.0p-81,
  185. 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de9.0p-79,
  186. 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5148.0p-81,
  187. 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba4.0p-79,
  188. 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b731.0p-80,
  189. 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81,
  190. 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79,
  191. 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c566.0p-79,
  192. 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb24.0p-81,
  193. 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698.0p-81,
  194. 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123616.0p-82,
  195. 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b2.0p-80,
  196. 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a424234.0p-79,
  197. 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83,
  198. 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770634.0p-79,
  199. 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b152.0p-82,
  200. 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f09.0p-80,
  201. 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad89.0p-79,
  202. 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf.0p-79,
  203. 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab90486409.0p-80,
  204. 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333.0p-79,
  205. 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80,
  206. 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c9.0p-80,
  207. 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79,
  208. 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a87.0p-81,
  209. 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3cb.0p-79,
  210. 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d.0p-81,
  211. 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81,
  212. 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79,
  213. 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b61.0p-80,
  214. 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a3.0p-80,
  215. 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82,
  216. 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80,
  217. 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f57.0p-80,
  218. 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80,
  219. 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d4.0p-80,
  220. 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd.0p-79,
  221. 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f730190.0p-79,
  222. 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cd.0p-80,
  223. 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d.0p-81,
  224. 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af2.0p-79,
  225. 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84,
  226. 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade0.0p-79,
  227. 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1.0p-79,
  228. 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c53.0p-79,
  229. 0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f.0p-78,
  230. 0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e5.0p-81,
  231. 0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b.0p-79,
  232. 0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb8287.0p-78,
  233. 0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9c.0p-78,
  234. 0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f0.0p-79,
  235. 0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd6.0p-80,
  236. 0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de.0p-78,
  237. 0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78,
  238. 0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79,
  239. 0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79,
  240. 0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f77.0p-78,
  241. 0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80,
  242. 0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d7.0p-79,
  243. 0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3237.0p-79,
  244. 0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d.0p-79,
  245. 0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c337.0p-79,
  246. 0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf3.0p-78,
  247. 0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79,
  248. 0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507c.0p-78,
  249. 0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e98.0p-79,
  250. 0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78,
  251. 0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f952.0p-78,
  252. 0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe.0p-78,
  253. 0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576b.0p-78,
  254. 0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a2.0p-79,
  255. 0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79,
  256. 0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f.0p-81,
  257. 0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79,
  258. 0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d20.0p-78,
  259. 0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c01.0p-79,
  260. 0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541ad.0p-79,
  261. 0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4572.0p-78,
  262. 0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c.0p-80,
  263. 0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d74936.0p-80,
  264. 0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce53266.0p-79,
  265. 0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d2.0p-79,
  266. 0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b36.0p-80,
  267. 0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3.0p-79,
  268. 0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80,
  269. 0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80,
  270. 0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a83.0p-81,
  271. 0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b.0p-78,
  272. 0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a198.0p-78,
  273. 0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c39.0p-81,
  274. };
  275. #ifdef USE_UTAB
  276. static const struct {
  277. float H; /* 1 + i/INTERVALS (exact) */
  278. float E; /* H(i) * G(i) - 1 (exact) */
  279. } U[TSIZE] = {
  280. 0x800000.0p-23, 0,
  281. 0x810000.0p-23, -0x800000.0p-37,
  282. 0x820000.0p-23, -0x800000.0p-35,
  283. 0x830000.0p-23, -0x900000.0p-34,
  284. 0x840000.0p-23, -0x800000.0p-33,
  285. 0x850000.0p-23, -0xc80000.0p-33,
  286. 0x860000.0p-23, -0xa00000.0p-36,
  287. 0x870000.0p-23, 0x940000.0p-33,
  288. 0x880000.0p-23, 0x800000.0p-35,
  289. 0x890000.0p-23, -0xc80000.0p-34,
  290. 0x8a0000.0p-23, 0xe00000.0p-36,
  291. 0x8b0000.0p-23, 0x900000.0p-33,
  292. 0x8c0000.0p-23, -0x800000.0p-35,
  293. 0x8d0000.0p-23, -0xe00000.0p-33,
  294. 0x8e0000.0p-23, 0x880000.0p-33,
  295. 0x8f0000.0p-23, -0xa80000.0p-34,
  296. 0x900000.0p-23, -0x800000.0p-35,
  297. 0x910000.0p-23, 0x800000.0p-37,
  298. 0x920000.0p-23, 0x900000.0p-35,
  299. 0x930000.0p-23, 0xd00000.0p-35,
  300. 0x940000.0p-23, 0xe00000.0p-35,
  301. 0x950000.0p-23, 0xc00000.0p-35,
  302. 0x960000.0p-23, 0xe00000.0p-36,
  303. 0x970000.0p-23, -0x800000.0p-38,
  304. 0x980000.0p-23, -0xc00000.0p-35,
  305. 0x990000.0p-23, -0xd00000.0p-34,
  306. 0x9a0000.0p-23, 0x880000.0p-33,
  307. 0x9b0000.0p-23, 0xe80000.0p-35,
  308. 0x9c0000.0p-23, -0x800000.0p-35,
  309. 0x9d0000.0p-23, 0xb40000.0p-33,
  310. 0x9e0000.0p-23, 0x880000.0p-34,
  311. 0x9f0000.0p-23, -0xe00000.0p-35,
  312. 0xa00000.0p-23, 0x800000.0p-33,
  313. 0xa10000.0p-23, -0x900000.0p-36,
  314. 0xa20000.0p-23, -0xb00000.0p-33,
  315. 0xa30000.0p-23, -0xa00000.0p-36,
  316. 0xa40000.0p-23, 0x800000.0p-33,
  317. 0xa50000.0p-23, -0xf80000.0p-35,
  318. 0xa60000.0p-23, 0x880000.0p-34,
  319. 0xa70000.0p-23, -0x900000.0p-33,
  320. 0xa80000.0p-23, -0x800000.0p-35,
  321. 0xa90000.0p-23, 0x900000.0p-34,
  322. 0xaa0000.0p-23, 0xa80000.0p-33,
  323. 0xab0000.0p-23, -0xac0000.0p-34,
  324. 0xac0000.0p-23, -0x800000.0p-37,
  325. 0xad0000.0p-23, 0xf80000.0p-35,
  326. 0xae0000.0p-23, 0xf80000.0p-34,
  327. 0xaf0000.0p-23, -0xac0000.0p-33,
  328. 0xb00000.0p-23, -0x800000.0p-33,
  329. 0xb10000.0p-23, -0xb80000.0p-34,
  330. 0xb20000.0p-23, -0x800000.0p-34,
  331. 0xb30000.0p-23, -0xb00000.0p-35,
  332. 0xb40000.0p-23, -0x800000.0p-35,
  333. 0xb50000.0p-23, -0xe00000.0p-36,
  334. 0xb60000.0p-23, -0x800000.0p-35,
  335. 0xb70000.0p-23, -0xb00000.0p-35,
  336. 0xb80000.0p-23, -0x800000.0p-34,
  337. 0xb90000.0p-23, -0xb80000.0p-34,
  338. 0xba0000.0p-23, -0x800000.0p-33,
  339. 0xbb0000.0p-23, -0xac0000.0p-33,
  340. 0xbc0000.0p-23, 0x980000.0p-33,
  341. 0xbd0000.0p-23, 0xbc0000.0p-34,
  342. 0xbe0000.0p-23, 0xe00000.0p-36,
  343. 0xbf0000.0p-23, -0xb80000.0p-35,
  344. 0xc00000.0p-23, -0x800000.0p-33,
  345. 0xc10000.0p-23, 0xa80000.0p-33,
  346. 0xc20000.0p-23, 0x900000.0p-34,
  347. 0xc30000.0p-23, -0x800000.0p-35,
  348. 0xc40000.0p-23, -0x900000.0p-33,
  349. 0xc50000.0p-23, 0x820000.0p-33,
  350. 0xc60000.0p-23, 0x800000.0p-38,
  351. 0xc70000.0p-23, -0x820000.0p-33,
  352. 0xc80000.0p-23, 0x800000.0p-33,
  353. 0xc90000.0p-23, -0xa00000.0p-36,
  354. 0xca0000.0p-23, -0xb00000.0p-33,
  355. 0xcb0000.0p-23, 0x840000.0p-34,
  356. 0xcc0000.0p-23, -0xd00000.0p-34,
  357. 0xcd0000.0p-23, 0x800000.0p-33,
  358. 0xce0000.0p-23, -0xe00000.0p-35,
  359. 0xcf0000.0p-23, 0xa60000.0p-33,
  360. 0xd00000.0p-23, -0x800000.0p-35,
  361. 0xd10000.0p-23, 0xb40000.0p-33,
  362. 0xd20000.0p-23, -0x800000.0p-35,
  363. 0xd30000.0p-23, 0xaa0000.0p-33,
  364. 0xd40000.0p-23, -0xe00000.0p-35,
  365. 0xd50000.0p-23, 0x880000.0p-33,
  366. 0xd60000.0p-23, -0xd00000.0p-34,
  367. 0xd70000.0p-23, 0x9c0000.0p-34,
  368. 0xd80000.0p-23, -0xb00000.0p-33,
  369. 0xd90000.0p-23, -0x800000.0p-38,
  370. 0xda0000.0p-23, 0xa40000.0p-33,
  371. 0xdb0000.0p-23, -0xdc0000.0p-34,
  372. 0xdc0000.0p-23, 0xc00000.0p-35,
  373. 0xdd0000.0p-23, 0xca0000.0p-33,
  374. 0xde0000.0p-23, -0xb80000.0p-34,
  375. 0xdf0000.0p-23, 0xd00000.0p-35,
  376. 0xe00000.0p-23, 0xc00000.0p-33,
  377. 0xe10000.0p-23, -0xf40000.0p-34,
  378. 0xe20000.0p-23, 0x800000.0p-37,
  379. 0xe30000.0p-23, 0x860000.0p-33,
  380. 0xe40000.0p-23, -0xc80000.0p-33,
  381. 0xe50000.0p-23, -0xa80000.0p-34,
  382. 0xe60000.0p-23, 0xe00000.0p-36,
  383. 0xe70000.0p-23, 0x880000.0p-33,
  384. 0xe80000.0p-23, -0xe00000.0p-33,
  385. 0xe90000.0p-23, -0xfc0000.0p-34,
  386. 0xea0000.0p-23, -0x800000.0p-35,
  387. 0xeb0000.0p-23, 0xe80000.0p-35,
  388. 0xec0000.0p-23, 0x900000.0p-33,
  389. 0xed0000.0p-23, 0xe20000.0p-33,
  390. 0xee0000.0p-23, -0xac0000.0p-33,
  391. 0xef0000.0p-23, -0xc80000.0p-34,
  392. 0xf00000.0p-23, -0x800000.0p-35,
  393. 0xf10000.0p-23, 0x800000.0p-35,
  394. 0xf20000.0p-23, 0xb80000.0p-34,
  395. 0xf30000.0p-23, 0x940000.0p-33,
  396. 0xf40000.0p-23, 0xc80000.0p-33,
  397. 0xf50000.0p-23, -0xf20000.0p-33,
  398. 0xf60000.0p-23, -0xc80000.0p-33,
  399. 0xf70000.0p-23, -0xa20000.0p-33,
  400. 0xf80000.0p-23, -0x800000.0p-33,
  401. 0xf90000.0p-23, -0xc40000.0p-34,
  402. 0xfa0000.0p-23, -0x900000.0p-34,
  403. 0xfb0000.0p-23, -0xc80000.0p-35,
  404. 0xfc0000.0p-23, -0x800000.0p-35,
  405. 0xfd0000.0p-23, -0x900000.0p-36,
  406. 0xfe0000.0p-23, -0x800000.0p-37,
  407. 0xff0000.0p-23, -0x800000.0p-39,
  408. 0x800000.0p-22, 0,
  409. };
  410. #endif /* USE_UTAB */
  411. #ifdef STRUCT_RETURN
  412. #define RETURN1(rp, v) do { \
  413. (rp)->hi = (v); \
  414. (rp)->lo_set = 0; \
  415. return; \
  416. } while (0)
  417. #define RETURN2(rp, h, l) do { \
  418. (rp)->hi = (h); \
  419. (rp)->lo = (l); \
  420. (rp)->lo_set = 1; \
  421. return; \
  422. } while (0)
  423. struct ld {
  424. long double hi;
  425. long double lo;
  426. int lo_set;
  427. };
  428. #else
  429. #define RETURN1(rp, v) RETURNF(v)
  430. #define RETURN2(rp, h, l) RETURNI((h) + (l))
  431. #endif
  432. #ifdef STRUCT_RETURN
  433. static inline __always_inline void
  434. k_logl(long double x, struct ld *rp)
  435. #else
  436. long double
  437. logl(long double x)
  438. #endif
  439. {
  440. long double d, dk, val_hi, val_lo, z;
  441. uint64_t ix, lx;
  442. int i, k;
  443. uint16_t hx;
  444. EXTRACT_LDBL80_WORDS(hx, lx, x);
  445. k = -16383;
  446. #if 0 /* Hard to do efficiently. Don't do it until we support all modes. */
  447. if (x == 1)
  448. RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */
  449. #endif
  450. if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */
  451. if (((hx & 0x7fff) | lx) == 0)
  452. RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
  453. if (hx != 0)
  454. /* log(neg or [pseudo-]NaN) = qNaN: */
  455. RETURN1(rp, (x - x) / zero);
  456. x *= 0x1.0p65; /* subnormal; scale up x */
  457. /* including pseudo-subnormals */
  458. EXTRACT_LDBL80_WORDS(hx, lx, x);
  459. k = -16383 - 65;
  460. } else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0)
  461. RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */
  462. /* log(pseudo-Inf) = qNaN */
  463. /* log(pseudo-NaN) = qNaN */
  464. /* log(unnormal) = qNaN */
  465. #ifndef STRUCT_RETURN
  466. ENTERI();
  467. #endif
  468. k += hx;
  469. ix = lx & 0x7fffffffffffffffULL;
  470. dk = k;
  471. /* Scale x to be in [1, 2). */
  472. SET_LDBL_EXPSIGN(x, 0x3fff);
  473. /* 0 <= i <= INTERVALS: */
  474. #define L2I (64 - LOG2_INTERVALS)
  475. i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
  476. /*
  477. * -0.005280 < d < 0.004838. In particular, the infinite-
  478. * precision |d| is <= 2**-7. Rounding of G(i) to 8 bits
  479. * ensures that d is representable without extra precision for
  480. * this bound on |d| (since when this calculation is expressed
  481. * as x*G(i)-1, the multiplication needs as many extra bits as
  482. * G(i) has and the subtraction cancels 8 bits). But for
  483. * most i (107 cases out of 129), the infinite-precision |d|
  484. * is <= 2**-8. G(i) is rounded to 9 bits for such i to give
  485. * better accuracy (this works by improving the bound on |d|,
  486. * which in turn allows rounding to 9 bits in more cases).
  487. * This is only important when the original x is near 1 -- it
  488. * lets us avoid using a special method to give the desired
  489. * accuracy for such x.
  490. */
  491. if (0)
  492. d = x * G(i) - 1;
  493. else {
  494. #ifdef USE_UTAB
  495. d = (x - H(i)) * G(i) + E(i);
  496. #else
  497. long double x_hi, x_lo;
  498. float fx_hi;
  499. /*
  500. * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
  501. * G(i) has at most 9 bits, so the splitting point is not
  502. * critical.
  503. */
  504. SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
  505. x_hi = fx_hi;
  506. x_lo = x - x_hi;
  507. d = x_hi * G(i) - 1 + x_lo * G(i);
  508. #endif
  509. }
  510. /*
  511. * Our algorithm depends on exact cancellation of F_lo(i) and
  512. * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
  513. * at the end of the table. This and other technical complications
  514. * make it difficult to avoid the double scaling in (dk*ln2) *
  515. * log(base) for base != e without losing more accuracy and/or
  516. * efficiency than is gained.
  517. */
  518. z = d * d;
  519. val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
  520. (F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2;
  521. val_hi = d;
  522. #ifdef DEBUG
  523. if (fetestexcept(FE_UNDERFLOW))
  524. breakpoint();
  525. #endif
  526. _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
  527. RETURN2(rp, val_hi, val_lo);
  528. }
  529. long double
  530. log1pl(long double x)
  531. {
  532. long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z;
  533. long double f_hi, twopminusk;
  534. uint64_t ix, lx;
  535. int i, k;
  536. int16_t ax, hx;
  537. DOPRINT_START(&x);
  538. EXTRACT_LDBL80_WORDS(hx, lx, x);
  539. if (hx < 0x3fff) { /* x < 1, or x neg NaN */
  540. ax = hx & 0x7fff;
  541. if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */
  542. if (ax == 0x3fff && lx == 0x8000000000000000ULL)
  543. RETURNP(-1 / zero); /* log1p(-1) = -Inf */
  544. /* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */
  545. RETURNP((x - x) / (x - x));
  546. }
  547. if (ax <= 0x3fbe) { /* |x| < 2**-64 */
  548. if ((int)x == 0)
  549. RETURNP(x); /* x with inexact if x != 0 */
  550. }
  551. f_hi = 1;
  552. f_lo = x;
  553. } else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */
  554. RETURNP(x + x); /* log1p(Inf or NaN) = Inf or qNaN */
  555. /* log1p(pseudo-Inf) = qNaN */
  556. /* log1p(pseudo-NaN) = qNaN */
  557. /* log1p(unnormal) = qNaN */
  558. } else if (hx < 0x407f) { /* 1 <= x < 2**128 */
  559. f_hi = x;
  560. f_lo = 1;
  561. } else { /* 2**128 <= x < +Inf */
  562. f_hi = x;
  563. f_lo = 0; /* avoid underflow of the P5 term */
  564. }
  565. ENTERI();
  566. x = f_hi + f_lo;
  567. f_lo = (f_hi - x) + f_lo;
  568. EXTRACT_LDBL80_WORDS(hx, lx, x);
  569. k = -16383;
  570. k += hx;
  571. ix = lx & 0x7fffffffffffffffULL;
  572. dk = k;
  573. SET_LDBL_EXPSIGN(x, 0x3fff);
  574. twopminusk = 1;
  575. SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
  576. f_lo *= twopminusk;
  577. i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
  578. /*
  579. * x*G(i)-1 (with a reduced x) can be represented exactly, as
  580. * above, but now we need to evaluate the polynomial on d =
  581. * (x+f_lo)*G(i)-1 and extra precision is needed for that.
  582. * Since x+x_lo is a hi+lo decomposition and subtracting 1
  583. * doesn't lose too many bits, an inexact calculation for
  584. * f_lo*G(i) is good enough.
  585. */
  586. if (0)
  587. d_hi = x * G(i) - 1;
  588. else {
  589. #ifdef USE_UTAB
  590. d_hi = (x - H(i)) * G(i) + E(i);
  591. #else
  592. long double x_hi, x_lo;
  593. float fx_hi;
  594. SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
  595. x_hi = fx_hi;
  596. x_lo = x - x_hi;
  597. d_hi = x_hi * G(i) - 1 + x_lo * G(i);
  598. #endif
  599. }
  600. d_lo = f_lo * G(i);
  601. /*
  602. * This is _2sumF(d_hi, d_lo) inlined. The condition
  603. * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
  604. * always satisifed, so it is not clear that this works, but
  605. * it works in practice. It works even if it gives a wrong
  606. * normalized d_lo, since |d_lo| > |d_hi| implies that i is
  607. * nonzero and d is tiny, so the F(i) term dominates d_lo.
  608. * In float precision:
  609. * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
  610. * And if d is only a little tinier than that, we would have
  611. * another underflow problem for the P3 term; this is also ruled
  612. * out by exhaustive testing.)
  613. */
  614. d = d_hi + d_lo;
  615. d_lo = d_hi - d + d_lo;
  616. d_hi = d;
  617. z = d * d;
  618. val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
  619. (F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2;
  620. val_hi = d_hi;
  621. #ifdef DEBUG
  622. if (fetestexcept(FE_UNDERFLOW))
  623. breakpoint();
  624. #endif
  625. _3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
  626. RETURN2PI(val_hi, val_lo);
  627. }
  628. #ifdef STRUCT_RETURN
  629. long double
  630. logl(long double x)
  631. {
  632. struct ld r;
  633. ENTERI();
  634. DOPRINT_START(&x);
  635. k_logl(x, &r);
  636. RETURNSPI(&r);
  637. }
  638. static const double
  639. invln10_hi = 4.3429448190317999e-1, /* 0x1bcb7b1526e000.0p-54 */
  640. invln10_lo = 7.1842412889749798e-14, /* 0x1438ca9aadd558.0p-96 */
  641. invln2_hi = 1.4426950408887933e0, /* 0x171547652b8000.0p-52 */
  642. invln2_lo = 1.7010652264631490e-13; /* 0x17f0bbbe87fed0.0p-95 */
  643. long double
  644. log10l(long double x)
  645. {
  646. struct ld r;
  647. long double hi, lo;
  648. ENTERI();
  649. DOPRINT_START(&x);
  650. k_logl(x, &r);
  651. if (!r.lo_set)
  652. RETURNPI(r.hi);
  653. _2sumF(r.hi, r.lo);
  654. hi = (float)r.hi;
  655. lo = r.lo + (r.hi - hi);
  656. RETURN2PI(invln10_hi * hi,
  657. (invln10_lo + invln10_hi) * lo + invln10_lo * hi);
  658. }
  659. long double
  660. log2l(long double x)
  661. {
  662. struct ld r;
  663. long double hi, lo;
  664. ENTERI();
  665. DOPRINT_START(&x);
  666. k_logl(x, &r);
  667. if (!r.lo_set)
  668. RETURNPI(r.hi);
  669. _2sumF(r.hi, r.lo);
  670. hi = (float)r.hi;
  671. lo = r.lo + (r.hi - hi);
  672. RETURN2PI(invln2_hi * hi,
  673. (invln2_lo + invln2_hi) * lo + invln2_lo * hi);
  674. }
  675. #endif /* STRUCT_RETURN */