s_expm1.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. /* @(#)s_expm1.c 5.1 93/09/24 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include "cdefs-compat.h"
  13. //__FBSDID("$FreeBSD: src/lib/msun/src/s_expm1.c,v 1.12 2011/10/21 06:26:38 das Exp $");
  14. /* expm1(x)
  15. * Returns exp(x)-1, the exponential of x minus 1.
  16. *
  17. * Method
  18. * 1. Argument reduction:
  19. * Given x, find r and integer k such that
  20. *
  21. * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
  22. *
  23. * Here a correction term c will be computed to compensate
  24. * the error in r when rounded to a floating-point number.
  25. *
  26. * 2. Approximating expm1(r) by a special rational function on
  27. * the interval [0,0.34658]:
  28. * Since
  29. * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
  30. * we define R1(r*r) by
  31. * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
  32. * That is,
  33. * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
  34. * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
  35. * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
  36. * We use a special Reme algorithm on [0,0.347] to generate
  37. * a polynomial of degree 5 in r*r to approximate R1. The
  38. * maximum error of this polynomial approximation is bounded
  39. * by 2**-61. In other words,
  40. * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
  41. * where Q1 = -1.6666666666666567384E-2,
  42. * Q2 = 3.9682539681370365873E-4,
  43. * Q3 = -9.9206344733435987357E-6,
  44. * Q4 = 2.5051361420808517002E-7,
  45. * Q5 = -6.2843505682382617102E-9;
  46. * z = r*r,
  47. * with error bounded by
  48. * | 5 | -61
  49. * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
  50. * | |
  51. *
  52. * expm1(r) = exp(r)-1 is then computed by the following
  53. * specific way which minimize the accumulation rounding error:
  54. * 2 3
  55. * r r [ 3 - (R1 + R1*r/2) ]
  56. * expm1(r) = r + --- + --- * [--------------------]
  57. * 2 2 [ 6 - r*(3 - R1*r/2) ]
  58. *
  59. * To compensate the error in the argument reduction, we use
  60. * expm1(r+c) = expm1(r) + c + expm1(r)*c
  61. * ~ expm1(r) + c + r*c
  62. * Thus c+r*c will be added in as the correction terms for
  63. * expm1(r+c). Now rearrange the term to avoid optimization
  64. * screw up:
  65. * ( 2 2 )
  66. * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
  67. * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
  68. * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
  69. * ( )
  70. *
  71. * = r - E
  72. * 3. Scale back to obtain expm1(x):
  73. * From step 1, we have
  74. * expm1(x) = either 2^k*[expm1(r)+1] - 1
  75. * = or 2^k*[expm1(r) + (1-2^-k)]
  76. * 4. Implementation notes:
  77. * (A). To save one multiplication, we scale the coefficient Qi
  78. * to Qi*2^i, and replace z by (x^2)/2.
  79. * (B). To achieve maximum accuracy, we compute expm1(x) by
  80. * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
  81. * (ii) if k=0, return r-E
  82. * (iii) if k=-1, return 0.5*(r-E)-0.5
  83. * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
  84. * else return 1.0+2.0*(r-E);
  85. * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
  86. * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
  87. * (vii) return 2^k(1-((E+2^-k)-r))
  88. *
  89. * Special cases:
  90. * expm1(INF) is INF, expm1(NaN) is NaN;
  91. * expm1(-INF) is -1, and
  92. * for finite argument, only expm1(0)=0 is exact.
  93. *
  94. * Accuracy:
  95. * according to an error analysis, the error is always less than
  96. * 1 ulp (unit in the last place).
  97. *
  98. * Misc. info.
  99. * For IEEE double
  100. * if x > 7.09782712893383973096e+02 then expm1(x) overflow
  101. *
  102. * Constants:
  103. * The hexadecimal values are the intended ones for the following
  104. * constants. The decimal values may be used, provided that the
  105. * compiler will convert from decimal to binary accurately enough
  106. * to produce the hexadecimal values shown.
  107. */
  108. #include <float.h>
  109. #include "openlibm.h"
  110. #include "math_private.h"
  111. static const double
  112. one = 1.0,
  113. huge = 1.0e+300,
  114. tiny = 1.0e-300,
  115. o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
  116. ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
  117. ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
  118. invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
  119. /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
  120. Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
  121. Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
  122. Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
  123. Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
  124. Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
  125. DLLEXPORT double
  126. expm1(double x)
  127. {
  128. double y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
  129. int32_t k,xsb;
  130. u_int32_t hx;
  131. GET_HIGH_WORD(hx,x);
  132. xsb = hx&0x80000000; /* sign bit of x */
  133. hx &= 0x7fffffff; /* high word of |x| */
  134. /* filter out huge and non-finite argument */
  135. if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
  136. if(hx >= 0x40862E42) { /* if |x|>=709.78... */
  137. if(hx>=0x7ff00000) {
  138. u_int32_t low;
  139. GET_LOW_WORD(low,x);
  140. if(((hx&0xfffff)|low)!=0)
  141. return x+x; /* NaN */
  142. else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
  143. }
  144. if(x > o_threshold) return huge*huge; /* overflow */
  145. }
  146. if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
  147. if(x+tiny<0.0) /* raise inexact */
  148. return tiny-one; /* return -1 */
  149. }
  150. }
  151. /* argument reduction */
  152. if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
  153. if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
  154. if(xsb==0)
  155. {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
  156. else
  157. {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
  158. } else {
  159. k = invln2*x+((xsb==0)?0.5:-0.5);
  160. t = k;
  161. hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
  162. lo = t*ln2_lo;
  163. }
  164. STRICT_ASSIGN(double, x, hi - lo);
  165. c = (hi-x)-lo;
  166. }
  167. else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
  168. t = huge+x; /* return x with inexact flags when x!=0 */
  169. return x - (t-(huge+x));
  170. }
  171. else k = 0;
  172. /* x is now in primary range */
  173. hfx = 0.5*x;
  174. hxs = x*hfx;
  175. r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
  176. t = 3.0-r1*hfx;
  177. e = hxs*((r1-t)/(6.0 - x*t));
  178. if(k==0) return x - (x*e-hxs); /* c is 0 */
  179. else {
  180. INSERT_WORDS(twopk,0x3ff00000+(k<<20),0); /* 2^k */
  181. e = (x*(e-c)-c);
  182. e -= hxs;
  183. if(k== -1) return 0.5*(x-e)-0.5;
  184. if(k==1) {
  185. if(x < -0.25) return -2.0*(e-(x+0.5));
  186. else return one+2.0*(x-e);
  187. }
  188. if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
  189. y = one-(e-x);
  190. if (k == 1024) y = y*2.0*0x1p1023;
  191. else y = y*twopk;
  192. return y-one;
  193. }
  194. t = one;
  195. if(k<20) {
  196. SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
  197. y = t-(e-x);
  198. y = y*twopk;
  199. } else {
  200. SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
  201. y = x-(e+t);
  202. y += one;
  203. y = y*twopk;
  204. }
  205. }
  206. return y;
  207. }