k_tanf.c 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. /* k_tanf.c -- float version of k_tan.c
  2. * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
  3. * Optimized by Bruce D. Evans.
  4. */
  5. /*
  6. * ====================================================
  7. * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
  8. *
  9. * Permission to use, copy, modify, and distribute this
  10. * software is freely granted, provided that this notice
  11. * is preserved.
  12. * ====================================================
  13. */
  14. #ifndef INLINE_KERNEL_TANDF
  15. #include "cdefs-compat.h"
  16. //__FBSDID("$FreeBSD: src/lib/msun/src/k_tanf.c,v 1.23 2009/06/03 08:16:34 ed Exp $");
  17. #endif
  18. #include "openlibm.h"
  19. #include "math_private.h"
  20. /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
  21. static const double
  22. T[] = {
  23. 0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
  24. 0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
  25. 0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
  26. 0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
  27. 0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
  28. 0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
  29. };
  30. #ifndef INLINE_KERNEL_TANDF
  31. extern
  32. #endif
  33. //__inline float
  34. DLLEXPORT float
  35. __kernel_tandf(double x, int iy)
  36. {
  37. double z,r,w,s,t,u;
  38. z = x*x;
  39. /*
  40. * Split up the polynomial into small independent terms to give
  41. * opportunities for parallel evaluation. The chosen splitting is
  42. * micro-optimized for Athlons (XP, X64). It costs 2 multiplications
  43. * relative to Horner's method on sequential machines.
  44. *
  45. * We add the small terms from lowest degree up for efficiency on
  46. * non-sequential machines (the lowest degree terms tend to be ready
  47. * earlier). Apart from this, we don't care about order of
  48. * operations, and don't need to to care since we have precision to
  49. * spare. However, the chosen splitting is good for accuracy too,
  50. * and would give results as accurate as Horner's method if the
  51. * small terms were added from highest degree down.
  52. */
  53. r = T[4]+z*T[5];
  54. t = T[2]+z*T[3];
  55. w = z*z;
  56. s = z*x;
  57. u = T[0]+z*T[1];
  58. r = (x+s*u)+(s*w)*(t+w*r);
  59. if(iy==1) return r;
  60. else return -1.0/r;
  61. }