e_sqrt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /* @(#)e_sqrt.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include "cdefs-compat.h"
  13. //__FBSDID("$FreeBSD: src/lib/msun/src/e_sqrt.c,v 1.11 2008/03/02 01:47:58 das Exp $");
  14. /* __ieee754_sqrt(x)
  15. * Return correctly rounded sqrt.
  16. * ------------------------------------------
  17. * | Use the hardware sqrt if you have one |
  18. * ------------------------------------------
  19. * Method:
  20. * Bit by bit method using integer arithmetic. (Slow, but portable)
  21. * 1. Normalization
  22. * Scale x to y in [1,4) with even powers of 2:
  23. * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
  24. * sqrt(x) = 2^k * sqrt(y)
  25. * 2. Bit by bit computation
  26. * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
  27. * i 0
  28. * i+1 2
  29. * s = 2*q , and y = 2 * ( y - q ). (1)
  30. * i i i i
  31. *
  32. * To compute q from q , one checks whether
  33. * i+1 i
  34. *
  35. * -(i+1) 2
  36. * (q + 2 ) <= y. (2)
  37. * i
  38. * -(i+1)
  39. * If (2) is false, then q = q ; otherwise q = q + 2 .
  40. * i+1 i i+1 i
  41. *
  42. * With some algebric manipulation, it is not difficult to see
  43. * that (2) is equivalent to
  44. * -(i+1)
  45. * s + 2 <= y (3)
  46. * i i
  47. *
  48. * The advantage of (3) is that s and y can be computed by
  49. * i i
  50. * the following recurrence formula:
  51. * if (3) is false
  52. *
  53. * s = s , y = y ; (4)
  54. * i+1 i i+1 i
  55. *
  56. * otherwise,
  57. * -i -(i+1)
  58. * s = s + 2 , y = y - s - 2 (5)
  59. * i+1 i i+1 i i
  60. *
  61. * One may easily use induction to prove (4) and (5).
  62. * Note. Since the left hand side of (3) contain only i+2 bits,
  63. * it does not necessary to do a full (53-bit) comparison
  64. * in (3).
  65. * 3. Final rounding
  66. * After generating the 53 bits result, we compute one more bit.
  67. * Together with the remainder, we can decide whether the
  68. * result is exact, bigger than 1/2ulp, or less than 1/2ulp
  69. * (it will never equal to 1/2ulp).
  70. * The rounding mode can be detected by checking whether
  71. * huge + tiny is equal to huge, and whether huge - tiny is
  72. * equal to huge for some floating point number "huge" and "tiny".
  73. *
  74. * Special cases:
  75. * sqrt(+-0) = +-0 ... exact
  76. * sqrt(inf) = inf
  77. * sqrt(-ve) = NaN ... with invalid signal
  78. * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
  79. *
  80. * Other methods : see the appended file at the end of the program below.
  81. *---------------
  82. */
  83. #include <float.h>
  84. #include <openlibm_math.h>
  85. #include "math_private.h"
  86. static const double one = 1.0, tiny=1.0e-300;
  87. DLLEXPORT double
  88. __ieee754_sqrt(double x)
  89. {
  90. double z;
  91. int32_t sign = (int)0x80000000;
  92. int32_t ix0,s0,q,m,t,i;
  93. u_int32_t r,t1,s1,ix1,q1;
  94. EXTRACT_WORDS(ix0,ix1,x);
  95. /* take care of Inf and NaN */
  96. if((ix0&0x7ff00000)==0x7ff00000) {
  97. return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
  98. sqrt(-inf)=sNaN */
  99. }
  100. /* take care of zero */
  101. if(ix0<=0) {
  102. if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
  103. else if(ix0<0)
  104. return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
  105. }
  106. /* normalize x */
  107. m = (ix0>>20);
  108. if(m==0) { /* subnormal x */
  109. while(ix0==0) {
  110. m -= 21;
  111. ix0 |= (ix1>>11); ix1 <<= 21;
  112. }
  113. for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
  114. m -= i-1;
  115. ix0 |= (ix1>>(32-i));
  116. ix1 <<= i;
  117. }
  118. m -= 1023; /* unbias exponent */
  119. ix0 = (ix0&0x000fffff)|0x00100000;
  120. if(m&1){ /* odd m, double x to make it even */
  121. ix0 += ix0 + ((ix1&sign)>>31);
  122. ix1 += ix1;
  123. }
  124. m >>= 1; /* m = [m/2] */
  125. /* generate sqrt(x) bit by bit */
  126. ix0 += ix0 + ((ix1&sign)>>31);
  127. ix1 += ix1;
  128. q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
  129. r = 0x00200000; /* r = moving bit from right to left */
  130. while(r!=0) {
  131. t = s0+r;
  132. if(t<=ix0) {
  133. s0 = t+r;
  134. ix0 -= t;
  135. q += r;
  136. }
  137. ix0 += ix0 + ((ix1&sign)>>31);
  138. ix1 += ix1;
  139. r>>=1;
  140. }
  141. r = sign;
  142. while(r!=0) {
  143. t1 = s1+r;
  144. t = s0;
  145. if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
  146. s1 = t1+r;
  147. if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
  148. ix0 -= t;
  149. if (ix1 < t1) ix0 -= 1;
  150. ix1 -= t1;
  151. q1 += r;
  152. }
  153. ix0 += ix0 + ((ix1&sign)>>31);
  154. ix1 += ix1;
  155. r>>=1;
  156. }
  157. /* use floating add to find out rounding direction */
  158. if((ix0|ix1)!=0) {
  159. z = one-tiny; /* trigger inexact flag */
  160. if (z>=one) {
  161. z = one+tiny;
  162. if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
  163. else if (z>one) {
  164. if (q1==(u_int32_t)0xfffffffe) q+=1;
  165. q1+=2;
  166. } else
  167. q1 += (q1&1);
  168. }
  169. }
  170. ix0 = (q>>1)+0x3fe00000;
  171. ix1 = q1>>1;
  172. if ((q&1)==1) ix1 |= sign;
  173. ix0 += (m <<20);
  174. INSERT_WORDS(z,ix0,ix1);
  175. return z;
  176. }
  177. #if (LDBL_MANT_DIG == 53)
  178. __weak_reference(sqrt, sqrtl);
  179. #endif
  180. /*
  181. Other methods (use floating-point arithmetic)
  182. -------------
  183. (This is a copy of a drafted paper by Prof W. Kahan
  184. and K.C. Ng, written in May, 1986)
  185. Two algorithms are given here to implement sqrt(x)
  186. (IEEE double precision arithmetic) in software.
  187. Both supply sqrt(x) correctly rounded. The first algorithm (in
  188. Section A) uses newton iterations and involves four divisions.
  189. The second one uses reciproot iterations to avoid division, but
  190. requires more multiplications. Both algorithms need the ability
  191. to chop results of arithmetic operations instead of round them,
  192. and the INEXACT flag to indicate when an arithmetic operation
  193. is executed exactly with no roundoff error, all part of the
  194. standard (IEEE 754-1985). The ability to perform shift, add,
  195. subtract and logical AND operations upon 32-bit words is needed
  196. too, though not part of the standard.
  197. A. sqrt(x) by Newton Iteration
  198. (1) Initial approximation
  199. Let x0 and x1 be the leading and the trailing 32-bit words of
  200. a floating point number x (in IEEE double format) respectively
  201. 1 11 52 ...widths
  202. ------------------------------------------------------
  203. x: |s| e | f |
  204. ------------------------------------------------------
  205. msb lsb msb lsb ...order
  206. ------------------------ ------------------------
  207. x0: |s| e | f1 | x1: | f2 |
  208. ------------------------ ------------------------
  209. By performing shifts and subtracts on x0 and x1 (both regarded
  210. as integers), we obtain an 8-bit approximation of sqrt(x) as
  211. follows.
  212. k := (x0>>1) + 0x1ff80000;
  213. y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
  214. Here k is a 32-bit integer and T1[] is an integer array containing
  215. correction terms. Now magically the floating value of y (y's
  216. leading 32-bit word is y0, the value of its trailing word is 0)
  217. approximates sqrt(x) to almost 8-bit.
  218. Value of T1:
  219. static int T1[32]= {
  220. 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
  221. 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
  222. 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
  223. 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
  224. (2) Iterative refinement
  225. Apply Heron's rule three times to y, we have y approximates
  226. sqrt(x) to within 1 ulp (Unit in the Last Place):
  227. y := (y+x/y)/2 ... almost 17 sig. bits
  228. y := (y+x/y)/2 ... almost 35 sig. bits
  229. y := y-(y-x/y)/2 ... within 1 ulp
  230. Remark 1.
  231. Another way to improve y to within 1 ulp is:
  232. y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
  233. y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
  234. 2
  235. (x-y )*y
  236. y := y + 2* ---------- ...within 1 ulp
  237. 2
  238. 3y + x
  239. This formula has one division fewer than the one above; however,
  240. it requires more multiplications and additions. Also x must be
  241. scaled in advance to avoid spurious overflow in evaluating the
  242. expression 3y*y+x. Hence it is not recommended uless division
  243. is slow. If division is very slow, then one should use the
  244. reciproot algorithm given in section B.
  245. (3) Final adjustment
  246. By twiddling y's last bit it is possible to force y to be
  247. correctly rounded according to the prevailing rounding mode
  248. as follows. Let r and i be copies of the rounding mode and
  249. inexact flag before entering the square root program. Also we
  250. use the expression y+-ulp for the next representable floating
  251. numbers (up and down) of y. Note that y+-ulp = either fixed
  252. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  253. mode.
  254. I := FALSE; ... reset INEXACT flag I
  255. R := RZ; ... set rounding mode to round-toward-zero
  256. z := x/y; ... chopped quotient, possibly inexact
  257. If(not I) then { ... if the quotient is exact
  258. if(z=y) {
  259. I := i; ... restore inexact flag
  260. R := r; ... restore rounded mode
  261. return sqrt(x):=y.
  262. } else {
  263. z := z - ulp; ... special rounding
  264. }
  265. }
  266. i := TRUE; ... sqrt(x) is inexact
  267. If (r=RN) then z=z+ulp ... rounded-to-nearest
  268. If (r=RP) then { ... round-toward-+inf
  269. y = y+ulp; z=z+ulp;
  270. }
  271. y := y+z; ... chopped sum
  272. y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
  273. I := i; ... restore inexact flag
  274. R := r; ... restore rounded mode
  275. return sqrt(x):=y.
  276. (4) Special cases
  277. Square root of +inf, +-0, or NaN is itself;
  278. Square root of a negative number is NaN with invalid signal.
  279. B. sqrt(x) by Reciproot Iteration
  280. (1) Initial approximation
  281. Let x0 and x1 be the leading and the trailing 32-bit words of
  282. a floating point number x (in IEEE double format) respectively
  283. (see section A). By performing shifs and subtracts on x0 and y0,
  284. we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
  285. k := 0x5fe80000 - (x0>>1);
  286. y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
  287. Here k is a 32-bit integer and T2[] is an integer array
  288. containing correction terms. Now magically the floating
  289. value of y (y's leading 32-bit word is y0, the value of
  290. its trailing word y1 is set to zero) approximates 1/sqrt(x)
  291. to almost 7.8-bit.
  292. Value of T2:
  293. static int T2[64]= {
  294. 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
  295. 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
  296. 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
  297. 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
  298. 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
  299. 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
  300. 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
  301. 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
  302. (2) Iterative refinement
  303. Apply Reciproot iteration three times to y and multiply the
  304. result by x to get an approximation z that matches sqrt(x)
  305. to about 1 ulp. To be exact, we will have
  306. -1ulp < sqrt(x)-z<1.0625ulp.
  307. ... set rounding mode to Round-to-nearest
  308. y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
  309. y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
  310. ... special arrangement for better accuracy
  311. z := x*y ... 29 bits to sqrt(x), with z*y<1
  312. z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
  313. Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
  314. (a) the term z*y in the final iteration is always less than 1;
  315. (b) the error in the final result is biased upward so that
  316. -1 ulp < sqrt(x) - z < 1.0625 ulp
  317. instead of |sqrt(x)-z|<1.03125ulp.
  318. (3) Final adjustment
  319. By twiddling y's last bit it is possible to force y to be
  320. correctly rounded according to the prevailing rounding mode
  321. as follows. Let r and i be copies of the rounding mode and
  322. inexact flag before entering the square root program. Also we
  323. use the expression y+-ulp for the next representable floating
  324. numbers (up and down) of y. Note that y+-ulp = either fixed
  325. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  326. mode.
  327. R := RZ; ... set rounding mode to round-toward-zero
  328. switch(r) {
  329. case RN: ... round-to-nearest
  330. if(x<= z*(z-ulp)...chopped) z = z - ulp; else
  331. if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
  332. break;
  333. case RZ:case RM: ... round-to-zero or round-to--inf
  334. R:=RP; ... reset rounding mod to round-to-+inf
  335. if(x<z*z ... rounded up) z = z - ulp; else
  336. if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
  337. break;
  338. case RP: ... round-to-+inf
  339. if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
  340. if(x>z*z ...chopped) z = z+ulp;
  341. break;
  342. }
  343. Remark 3. The above comparisons can be done in fixed point. For
  344. example, to compare x and w=z*z chopped, it suffices to compare
  345. x1 and w1 (the trailing parts of x and w), regarding them as
  346. two's complement integers.
  347. ...Is z an exact square root?
  348. To determine whether z is an exact square root of x, let z1 be the
  349. trailing part of z, and also let x0 and x1 be the leading and
  350. trailing parts of x.
  351. If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
  352. I := 1; ... Raise Inexact flag: z is not exact
  353. else {
  354. j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
  355. k := z1 >> 26; ... get z's 25-th and 26-th
  356. fraction bits
  357. I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
  358. }
  359. R:= r ... restore rounded mode
  360. return sqrt(x):=z.
  361. If multiplication is cheaper then the foregoing red tape, the
  362. Inexact flag can be evaluated by
  363. I := i;
  364. I := (z*z!=x) or I.
  365. Note that z*z can overwrite I; this value must be sensed if it is
  366. True.
  367. Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
  368. zero.
  369. --------------------
  370. z1: | f2 |
  371. --------------------
  372. bit 31 bit 0
  373. Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
  374. or even of logb(x) have the following relations:
  375. -------------------------------------------------
  376. bit 27,26 of z1 bit 1,0 of x1 logb(x)
  377. -------------------------------------------------
  378. 00 00 odd and even
  379. 01 01 even
  380. 10 10 odd
  381. 10 00 even
  382. 11 01 even
  383. -------------------------------------------------
  384. (4) Special cases (see (4) of Section A).
  385. */