123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- /* @(#)s_cbrt.c 5.1 93/09/24 */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- * Optimized by Bruce D. Evans.
- */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.17 2011/03/12 16:50:39 kargl Exp $");
- #include <openlibm_math.h>
- #include "math_private.h"
- /* cbrt(x)
- * Return cube root of x
- */
- static const u_int32_t
- B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
- B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
- /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
- static const double
- P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
- P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
- P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
- P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
- P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
- DLLEXPORT double
- cbrt(double x)
- {
- int32_t hx;
- union {
- double value;
- u_int64_t bits;
- } u;
- double r,s,t=0.0,w;
- u_int32_t sign;
- u_int32_t high,low;
- EXTRACT_WORDS(hx,low,x);
- sign=hx&0x80000000; /* sign= sign(x) */
- hx ^=sign;
- if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
- /*
- * Rough cbrt to 5 bits:
- * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
- * where e is integral and >= 0, m is real and in [0, 1), and "/" and
- * "%" are integer division and modulus with rounding towards minus
- * infinity. The RHS is always >= the LHS and has a maximum relative
- * error of about 1 in 16. Adding a bias of -0.03306235651 to the
- * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
- * floating point representation, for finite positive normal values,
- * ordinary integer divison of the value in bits magically gives
- * almost exactly the RHS of the above provided we first subtract the
- * exponent bias (1023 for doubles) and later add it back. We do the
- * subtraction virtually to keep e >= 0 so that ordinary integer
- * division rounds towards minus infinity; this is also efficient.
- */
- if(hx<0x00100000) { /* zero or subnormal? */
- if((hx|low)==0)
- return(x); /* cbrt(0) is itself */
- SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
- t*=x;
- GET_HIGH_WORD(high,t);
- INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
- } else
- INSERT_WORDS(t,sign|(hx/3+B1),0);
- /*
- * New cbrt to 23 bits:
- * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
- * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
- * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
- * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
- * gives us bounds for r = t**3/x.
- *
- * Try to optimize for parallel evaluation as in k_tanf.c.
- */
- r=(t*t)*(t/x);
- t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
- /*
- * Round t away from zero to 23 bits (sloppily except for ensuring that
- * the result is larger in magnitude than cbrt(x) but not much more than
- * 2 23-bit ulps larger). With rounding towards zero, the error bound
- * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
- * in the rounded t, the infinite-precision error in the Newton
- * approximation barely affects third digit in the final error
- * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
- * before the final error is larger than 0.667 ulps.
- */
- u.value=t;
- u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
- t=u.value;
- /* one step Newton iteration to 53 bits with error < 0.667 ulps */
- s=t*t; /* t*t is exact */
- r=x/s; /* error <= 0.5 ulps; |r| < |t| */
- w=t+t; /* t+t is exact */
- r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
- t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
- return(t);
- }
- #if (LDBL_MANT_DIG == 53)
- __weak_reference(cbrt, cbrtl);
- #endif
|