s_log1p.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. /* @(#)s_log1p.c 5.1 93/09/24 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunPro, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include "cdefs-compat.h"
  13. //__FBSDID("$FreeBSD: src/lib/msun/src/s_log1p.c,v 1.10 2008/03/29 16:37:59 das Exp $");
  14. /* double log1p(double x)
  15. *
  16. * Method :
  17. * 1. Argument Reduction: find k and f such that
  18. * 1+x = 2^k * (1+f),
  19. * where sqrt(2)/2 < 1+f < sqrt(2) .
  20. *
  21. * Note. If k=0, then f=x is exact. However, if k!=0, then f
  22. * may not be representable exactly. In that case, a correction
  23. * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
  24. * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
  25. * and add back the correction term c/u.
  26. * (Note: when x > 2**53, one can simply return log(x))
  27. *
  28. * 2. Approximation of log1p(f).
  29. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  30. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  31. * = 2s + s*R
  32. * We use a special Reme algorithm on [0,0.1716] to generate
  33. * a polynomial of degree 14 to approximate R The maximum error
  34. * of this polynomial approximation is bounded by 2**-58.45. In
  35. * other words,
  36. * 2 4 6 8 10 12 14
  37. * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
  38. * (the values of Lp1 to Lp7 are listed in the program)
  39. * and
  40. * | 2 14 | -58.45
  41. * | Lp1*s +...+Lp7*s - R(z) | <= 2
  42. * | |
  43. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  44. * In order to guarantee error in log below 1ulp, we compute log
  45. * by
  46. * log1p(f) = f - (hfsq - s*(hfsq+R)).
  47. *
  48. * 3. Finally, log1p(x) = k*ln2 + log1p(f).
  49. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  50. * Here ln2 is split into two floating point number:
  51. * ln2_hi + ln2_lo,
  52. * where n*ln2_hi is always exact for |n| < 2000.
  53. *
  54. * Special cases:
  55. * log1p(x) is NaN with signal if x < -1 (including -INF) ;
  56. * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
  57. * log1p(NaN) is that NaN with no signal.
  58. *
  59. * Accuracy:
  60. * according to an error analysis, the error is always less than
  61. * 1 ulp (unit in the last place).
  62. *
  63. * Constants:
  64. * The hexadecimal values are the intended ones for the following
  65. * constants. The decimal values may be used, provided that the
  66. * compiler will convert from decimal to binary accurately enough
  67. * to produce the hexadecimal values shown.
  68. *
  69. * Note: Assuming log() return accurate answer, the following
  70. * algorithm can be used to compute log1p(x) to within a few ULP:
  71. *
  72. * u = 1+x;
  73. * if(u==1.0) return x ; else
  74. * return log(u)*(x/(u-1.0));
  75. *
  76. * See HP-15C Advanced Functions Handbook, p.193.
  77. */
  78. #include <float.h>
  79. #include <openlibm_math.h>
  80. #include "math_private.h"
  81. static const double
  82. ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
  83. ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
  84. two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
  85. Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
  86. Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
  87. Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
  88. Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
  89. Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
  90. Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
  91. Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
  92. static const double zero = 0.0;
  93. DLLEXPORT double
  94. log1p(double x)
  95. {
  96. double hfsq,f,c,s,z,R,u;
  97. int32_t k,hx,hu,ax;
  98. GET_HIGH_WORD(hx,x);
  99. ax = hx&0x7fffffff;
  100. k = 1;
  101. if (hx < 0x3FDA827A) { /* 1+x < sqrt(2)+ */
  102. if(ax>=0x3ff00000) { /* x <= -1.0 */
  103. if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
  104. else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
  105. }
  106. if(ax<0x3e200000) { /* |x| < 2**-29 */
  107. if(two54+x>zero /* raise inexact */
  108. &&ax<0x3c900000) /* |x| < 2**-54 */
  109. return x;
  110. else
  111. return x - x*x*0.5;
  112. }
  113. if(hx>0||hx<=((int32_t)0xbfd2bec4)) {
  114. k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
  115. }
  116. if (hx >= 0x7ff00000) return x+x;
  117. if(k!=0) {
  118. if(hx<0x43400000) {
  119. STRICT_ASSIGN(double,u,1.0+x);
  120. GET_HIGH_WORD(hu,u);
  121. k = (hu>>20)-1023;
  122. c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
  123. c /= u;
  124. } else {
  125. u = x;
  126. GET_HIGH_WORD(hu,u);
  127. k = (hu>>20)-1023;
  128. c = 0;
  129. }
  130. hu &= 0x000fffff;
  131. /*
  132. * The approximation to sqrt(2) used in thresholds is not
  133. * critical. However, the ones used above must give less
  134. * strict bounds than the one here so that the k==0 case is
  135. * never reached from here, since here we have committed to
  136. * using the correction term but don't use it if k==0.
  137. */
  138. if(hu<0x6a09e) { /* u ~< sqrt(2) */
  139. SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
  140. } else {
  141. k += 1;
  142. SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
  143. hu = (0x00100000-hu)>>2;
  144. }
  145. f = u-1.0;
  146. }
  147. hfsq=0.5*f*f;
  148. if(hu==0) { /* |f| < 2**-20 */
  149. if(f==zero) {
  150. if(k==0) {
  151. return zero;
  152. } else {
  153. c += k*ln2_lo;
  154. return k*ln2_hi+c;
  155. }
  156. }
  157. R = hfsq*(1.0-0.66666666666666666*f);
  158. if(k==0) return f-R; else
  159. return k*ln2_hi-((R-(k*ln2_lo+c))-f);
  160. }
  161. s = f/(2.0+f);
  162. z = s*s;
  163. R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
  164. if(k==0) return f-(hfsq-s*(hfsq+R)); else
  165. return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
  166. }