besynu.f 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353
  1. *DECK BESYNU
  2. SUBROUTINE BESYNU (X, FNU, N, Y)
  3. C***BEGIN PROLOGUE BESYNU
  4. C***SUBSIDIARY
  5. C***PURPOSE Subsidiary to BESY
  6. C***LIBRARY SLATEC
  7. C***TYPE SINGLE PRECISION (BESYNU-S, DBSYNU-D)
  8. C***AUTHOR Amos, D. E., (SNLA)
  9. C***DESCRIPTION
  10. C
  11. C Abstract
  12. C BESYNU computes N member sequences of Y Bessel functions
  13. C Y/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
  14. C positive X. Equations of the references are implemented on
  15. C small orders DNU for Y/SUB(DNU)/(X) and Y/SUB(DNU+1)/(X).
  16. C Forward recursion with the three term recursion relation
  17. C generates higher orders FNU+I-1, I=1,...,N.
  18. C
  19. C To start the recursion FNU is normalized to the interval
  20. C -0.5.LE.DNU.LT.0.5. A special form of the power series is
  21. C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
  22. C K Bessel function in terms of the confluent hypergeometric
  23. C function U(FNU+0.5,2*FNU+1,I*X) is implemented on X1.LT.X.LE.X
  24. C Here I is the complex number SQRT(-1.).
  25. C For X.GT.X2, the asymptotic expansion for large X is used.
  26. C When FNU is a half odd integer, a special formula for
  27. C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
  28. C
  29. C BESYNU assumes that a significant digit SINH(X) function is
  30. C available.
  31. C
  32. C Description of Arguments
  33. C
  34. C Input
  35. C X - X.GT.0.0E0
  36. C FNU - Order of initial Y function, FNU.GE.0.0E0
  37. C N - Number of members of the sequence, N.GE.1
  38. C
  39. C Output
  40. C Y - A vector whose first N components contain values
  41. C for the sequence Y(I)=Y/SUB(FNU+I-1), I=1,N.
  42. C
  43. C Error Conditions
  44. C Improper input arguments - a fatal error
  45. C Overflow - a fatal error
  46. C
  47. C***SEE ALSO BESY
  48. C***REFERENCES N. M. Temme, On the numerical evaluation of the ordinary
  49. C Bessel function of the second kind, Journal of
  50. C Computational Physics 21, (1976), pp. 343-350.
  51. C N. M. Temme, On the numerical evaluation of the modified
  52. C Bessel function of the third kind, Journal of
  53. C Computational Physics 19, (1975), pp. 324-337.
  54. C***ROUTINES CALLED GAMMA, R1MACH, XERMSG
  55. C***REVISION HISTORY (YYMMDD)
  56. C 800501 DATE WRITTEN
  57. C 890531 Changed all specific intrinsics to generic. (WRB)
  58. C 891214 Prologue converted to Version 4.0 format. (BAB)
  59. C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
  60. C 900326 Removed duplicate information from DESCRIPTION section.
  61. C (WRB)
  62. C 900328 Added TYPE section. (WRB)
  63. C 900727 Added EXTERNAL statement. (WRB)
  64. C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
  65. C 920501 Reformatted the REFERENCES section. (WRB)
  66. C***END PROLOGUE BESYNU
  67. C
  68. INTEGER I, INU, J, K, KK, N, NN
  69. REAL A, AK, ARG, A1, A2, BK, CB, CBK, CC, CCK, CK, COEF, CPT,
  70. 1 CP1, CP2, CS, CS1, CS2, CX, DNU, DNU2, ETEST, ETX, F, FC, FHS,
  71. 2 FK, FKS, FLRX, FMU, FN, FNU, FX, G, G1, G2, HPI, P, PI, PT, Q,
  72. 3 RB, RBK, RCK, RELB, RPT, RP1, RP2, RS, RS1, RS2, RTHPI, RX, S,
  73. 4 SA, SB, SMU, SS, ST, S1, S2, TB, TM, TOL, T1, T2, X, X1, X2, Y
  74. DIMENSION A(120), RB(120), CB(120), Y(*), CC(8)
  75. REAL GAMMA, R1MACH
  76. EXTERNAL GAMMA
  77. SAVE X1, X2, PI, RTHPI, HPI, CC
  78. DATA X1, X2 / 3.0E0, 20.0E0 /
  79. DATA PI,RTHPI / 3.14159265358979E+00, 7.97884560802865E-01/
  80. DATA HPI / 1.57079632679490E+00/
  81. DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
  82. 1 / 5.77215664901533E-01,-4.20026350340952E-02,
  83. 2-4.21977345555443E-02, 7.21894324666300E-03,-2.15241674114900E-04,
  84. 3-2.01348547807000E-05, 1.13302723200000E-06, 6.11609500000000E-09/
  85. C***FIRST EXECUTABLE STATEMENT BESYNU
  86. AK = R1MACH(3)
  87. TOL = MAX(AK,1.0E-15)
  88. IF (X.LE.0.0E0) GO TO 270
  89. IF (FNU.LT.0.0E0) GO TO 280
  90. IF (N.LT.1) GO TO 290
  91. RX = 2.0E0/X
  92. INU = INT(FNU+0.5E0)
  93. DNU = FNU - INU
  94. IF (ABS(DNU).EQ.0.5E0) GO TO 260
  95. DNU2 = 0.0E0
  96. IF (ABS(DNU).LT.TOL) GO TO 10
  97. DNU2 = DNU*DNU
  98. 10 CONTINUE
  99. IF (X.GT.X1) GO TO 120
  100. C
  101. C SERIES FOR X.LE.X1
  102. C
  103. A1 = 1.0E0 - DNU
  104. A2 = 1.0E0 + DNU
  105. T1 = 1.0E0/GAMMA(A1)
  106. T2 = 1.0E0/GAMMA(A2)
  107. IF (ABS(DNU).GT.0.1E0) GO TO 40
  108. C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
  109. S = CC(1)
  110. AK = 1.0E0
  111. DO 20 K=2,8
  112. AK = AK*DNU2
  113. TM = CC(K)*AK
  114. S = S + TM
  115. IF (ABS(TM).LT.TOL) GO TO 30
  116. 20 CONTINUE
  117. 30 G1 = -(S+S)
  118. GO TO 50
  119. 40 CONTINUE
  120. G1 = (T1-T2)/DNU
  121. 50 CONTINUE
  122. G2 = T1 + T2
  123. SMU = 1.0E0
  124. FC = 1.0E0/PI
  125. FLRX = LOG(RX)
  126. FMU = DNU*FLRX
  127. TM = 0.0E0
  128. IF (DNU.EQ.0.0E0) GO TO 60
  129. TM = SIN(DNU*HPI)/DNU
  130. TM = (DNU+DNU)*TM*TM
  131. FC = DNU/SIN(DNU*PI)
  132. IF (FMU.NE.0.0E0) SMU = SINH(FMU)/FMU
  133. 60 CONTINUE
  134. F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
  135. FX = EXP(FMU)
  136. P = FC*T1*FX
  137. Q = FC*T2/FX
  138. G = F + TM*Q
  139. AK = 1.0E0
  140. CK = 1.0E0
  141. BK = 1.0E0
  142. S1 = G
  143. S2 = P
  144. IF (INU.GT.0 .OR. N.GT.1) GO TO 90
  145. IF (X.LT.TOL) GO TO 80
  146. CX = X*X*0.25E0
  147. 70 CONTINUE
  148. F = (AK*F+P+Q)/(BK-DNU2)
  149. P = P/(AK-DNU)
  150. Q = Q/(AK+DNU)
  151. G = F + TM*Q
  152. CK = -CK*CX/AK
  153. T1 = CK*G
  154. S1 = S1 + T1
  155. BK = BK + AK + AK + 1.0E0
  156. AK = AK + 1.0E0
  157. S = ABS(T1)/(1.0E0+ABS(S1))
  158. IF (S.GT.TOL) GO TO 70
  159. 80 CONTINUE
  160. Y(1) = -S1
  161. RETURN
  162. 90 CONTINUE
  163. IF (X.LT.TOL) GO TO 110
  164. CX = X*X*0.25E0
  165. 100 CONTINUE
  166. F = (AK*F+P+Q)/(BK-DNU2)
  167. P = P/(AK-DNU)
  168. Q = Q/(AK+DNU)
  169. G = F + TM*Q
  170. CK = -CK*CX/AK
  171. T1 = CK*G
  172. S1 = S1 + T1
  173. T2 = CK*(P-AK*G)
  174. S2 = S2 + T2
  175. BK = BK + AK + AK + 1.0E0
  176. AK = AK + 1.0E0
  177. S = ABS(T1)/(1.0E0+ABS(S1)) + ABS(T2)/(1.0E0+ABS(S2))
  178. IF (S.GT.TOL) GO TO 100
  179. 110 CONTINUE
  180. S2 = -S2*RX
  181. S1 = -S1
  182. GO TO 160
  183. 120 CONTINUE
  184. COEF = RTHPI/SQRT(X)
  185. IF (X.GT.X2) GO TO 210
  186. C
  187. C MILLER ALGORITHM FOR X1.LT.X.LE.X2
  188. C
  189. ETEST = COS(PI*DNU)/(PI*X*TOL)
  190. FKS = 1.0E0
  191. FHS = 0.25E0
  192. FK = 0.0E0
  193. RCK = 2.0E0
  194. CCK = X + X
  195. RP1 = 0.0E0
  196. CP1 = 0.0E0
  197. RP2 = 1.0E0
  198. CP2 = 0.0E0
  199. K = 0
  200. 130 CONTINUE
  201. K = K + 1
  202. FK = FK + 1.0E0
  203. AK = (FHS-DNU2)/(FKS+FK)
  204. PT = FK + 1.0E0
  205. RBK = RCK/PT
  206. CBK = CCK/PT
  207. RPT = RP2
  208. CPT = CP2
  209. RP2 = RBK*RPT - CBK*CPT - AK*RP1
  210. CP2 = CBK*RPT + RBK*CPT - AK*CP1
  211. RP1 = RPT
  212. CP1 = CPT
  213. RB(K) = RBK
  214. CB(K) = CBK
  215. A(K) = AK
  216. RCK = RCK + 2.0E0
  217. FKS = FKS + FK + FK + 1.0E0
  218. FHS = FHS + FK + FK
  219. PT = MAX(ABS(RP1),ABS(CP1))
  220. FC = (RP1/PT)**2 + (CP1/PT)**2
  221. PT = PT*SQRT(FC)*FK
  222. IF (ETEST.GT.PT) GO TO 130
  223. KK = K
  224. RS = 1.0E0
  225. CS = 0.0E0
  226. RP1 = 0.0E0
  227. CP1 = 0.0E0
  228. RP2 = 1.0E0
  229. CP2 = 0.0E0
  230. DO 140 I=1,K
  231. RPT = RP2
  232. CPT = CP2
  233. RP2 = (RB(KK)*RPT-CB(KK)*CPT-RP1)/A(KK)
  234. CP2 = (CB(KK)*RPT+RB(KK)*CPT-CP1)/A(KK)
  235. RP1 = RPT
  236. CP1 = CPT
  237. RS = RS + RP2
  238. CS = CS + CP2
  239. KK = KK - 1
  240. 140 CONTINUE
  241. PT = MAX(ABS(RS),ABS(CS))
  242. FC = (RS/PT)**2 + (CS/PT)**2
  243. PT = PT*SQRT(FC)
  244. RS1 = (RP2*(RS/PT)+CP2*(CS/PT))/PT
  245. CS1 = (CP2*(RS/PT)-RP2*(CS/PT))/PT
  246. FC = HPI*(DNU-0.5E0) - X
  247. P = COS(FC)
  248. Q = SIN(FC)
  249. S1 = (CS1*Q-RS1*P)*COEF
  250. IF (INU.GT.0 .OR. N.GT.1) GO TO 150
  251. Y(1) = S1
  252. RETURN
  253. 150 CONTINUE
  254. PT = MAX(ABS(RP2),ABS(CP2))
  255. FC = (RP2/PT)**2 + (CP2/PT)**2
  256. PT = PT*SQRT(FC)
  257. RPT = DNU + 0.5E0 - (RP1*(RP2/PT)+CP1*(CP2/PT))/PT
  258. CPT = X - (CP1*(RP2/PT)-RP1*(CP2/PT))/PT
  259. CS2 = CS1*CPT - RS1*RPT
  260. RS2 = RPT*CS1 + RS1*CPT
  261. S2 = (RS2*Q+CS2*P)*COEF/X
  262. C
  263. C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
  264. C
  265. 160 CONTINUE
  266. CK = (DNU+DNU+2.0E0)/X
  267. IF (N.EQ.1) INU = INU - 1
  268. IF (INU.GT.0) GO TO 170
  269. IF (N.GT.1) GO TO 190
  270. S1 = S2
  271. GO TO 190
  272. 170 CONTINUE
  273. DO 180 I=1,INU
  274. ST = S2
  275. S2 = CK*S2 - S1
  276. S1 = ST
  277. CK = CK + RX
  278. 180 CONTINUE
  279. IF (N.EQ.1) S1 = S2
  280. 190 CONTINUE
  281. Y(1) = S1
  282. IF (N.EQ.1) RETURN
  283. Y(2) = S2
  284. IF (N.EQ.2) RETURN
  285. DO 200 I=3,N
  286. Y(I) = CK*Y(I-1) - Y(I-2)
  287. CK = CK + RX
  288. 200 CONTINUE
  289. RETURN
  290. C
  291. C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
  292. C
  293. 210 CONTINUE
  294. NN = 2
  295. IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
  296. DNU2 = DNU + DNU
  297. FMU = 0.0E0
  298. IF (ABS(DNU2).LT.TOL) GO TO 220
  299. FMU = DNU2*DNU2
  300. 220 CONTINUE
  301. ARG = X - HPI*(DNU+0.5E0)
  302. SA = SIN(ARG)
  303. SB = COS(ARG)
  304. ETX = 8.0E0*X
  305. DO 250 K=1,NN
  306. S1 = S2
  307. T2 = (FMU-1.0E0)/ETX
  308. SS = T2
  309. RELB = TOL*ABS(T2)
  310. T1 = ETX
  311. S = 1.0E0
  312. FN = 1.0E0
  313. AK = 0.0E0
  314. DO 230 J=1,13
  315. T1 = T1 + ETX
  316. AK = AK + 8.0E0
  317. FN = FN + AK
  318. T2 = -T2*(FMU-FN)/T1
  319. S = S + T2
  320. T1 = T1 + ETX
  321. AK = AK + 8.0E0
  322. FN = FN + AK
  323. T2 = T2*(FMU-FN)/T1
  324. SS = SS + T2
  325. IF (ABS(T2).LE.RELB) GO TO 240
  326. 230 CONTINUE
  327. 240 S2 = COEF*(S*SA+SS*SB)
  328. FMU = FMU + 8.0E0*DNU + 4.0E0
  329. TB = SA
  330. SA = -SB
  331. SB = TB
  332. 250 CONTINUE
  333. IF (NN.GT.1) GO TO 160
  334. S1 = S2
  335. GO TO 190
  336. C
  337. C FNU=HALF ODD INTEGER CASE
  338. C
  339. 260 CONTINUE
  340. COEF = RTHPI/SQRT(X)
  341. S1 = COEF*SIN(X)
  342. S2 = -COEF*COS(X)
  343. GO TO 160
  344. C
  345. C
  346. 270 CALL XERMSG ('SLATEC', 'BESYNU', 'X NOT GREATER THAN ZERO', 2, 1)
  347. RETURN
  348. 280 CALL XERMSG ('SLATEC', 'BESYNU', 'FNU NOT ZERO OR POSITIVE', 2,
  349. + 1)
  350. RETURN
  351. 290 CALL XERMSG ('SLATEC', 'BESYNU', 'N NOT GREATER THAN 0', 2, 1)
  352. RETURN
  353. END