123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- *DECK BESYNU
- SUBROUTINE BESYNU (X, FNU, N, Y)
- C***BEGIN PROLOGUE BESYNU
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to BESY
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (BESYNU-S, DBSYNU-D)
- C***AUTHOR Amos, D. E., (SNLA)
- C***DESCRIPTION
- C
- C Abstract
- C BESYNU computes N member sequences of Y Bessel functions
- C Y/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
- C positive X. Equations of the references are implemented on
- C small orders DNU for Y/SUB(DNU)/(X) and Y/SUB(DNU+1)/(X).
- C Forward recursion with the three term recursion relation
- C generates higher orders FNU+I-1, I=1,...,N.
- C
- C To start the recursion FNU is normalized to the interval
- C -0.5.LE.DNU.LT.0.5. A special form of the power series is
- C implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
- C K Bessel function in terms of the confluent hypergeometric
- C function U(FNU+0.5,2*FNU+1,I*X) is implemented on X1.LT.X.LE.X
- C Here I is the complex number SQRT(-1.).
- C For X.GT.X2, the asymptotic expansion for large X is used.
- C When FNU is a half odd integer, a special formula for
- C DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.
- C
- C BESYNU assumes that a significant digit SINH(X) function is
- C available.
- C
- C Description of Arguments
- C
- C Input
- C X - X.GT.0.0E0
- C FNU - Order of initial Y function, FNU.GE.0.0E0
- C N - Number of members of the sequence, N.GE.1
- C
- C Output
- C Y - A vector whose first N components contain values
- C for the sequence Y(I)=Y/SUB(FNU+I-1), I=1,N.
- C
- C Error Conditions
- C Improper input arguments - a fatal error
- C Overflow - a fatal error
- C
- C***SEE ALSO BESY
- C***REFERENCES N. M. Temme, On the numerical evaluation of the ordinary
- C Bessel function of the second kind, Journal of
- C Computational Physics 21, (1976), pp. 343-350.
- C N. M. Temme, On the numerical evaluation of the modified
- C Bessel function of the third kind, Journal of
- C Computational Physics 19, (1975), pp. 324-337.
- C***ROUTINES CALLED GAMMA, R1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800501 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 900328 Added TYPE section. (WRB)
- C 900727 Added EXTERNAL statement. (WRB)
- C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE BESYNU
- C
- INTEGER I, INU, J, K, KK, N, NN
- REAL A, AK, ARG, A1, A2, BK, CB, CBK, CC, CCK, CK, COEF, CPT,
- 1 CP1, CP2, CS, CS1, CS2, CX, DNU, DNU2, ETEST, ETX, F, FC, FHS,
- 2 FK, FKS, FLRX, FMU, FN, FNU, FX, G, G1, G2, HPI, P, PI, PT, Q,
- 3 RB, RBK, RCK, RELB, RPT, RP1, RP2, RS, RS1, RS2, RTHPI, RX, S,
- 4 SA, SB, SMU, SS, ST, S1, S2, TB, TM, TOL, T1, T2, X, X1, X2, Y
- DIMENSION A(120), RB(120), CB(120), Y(*), CC(8)
- REAL GAMMA, R1MACH
- EXTERNAL GAMMA
- SAVE X1, X2, PI, RTHPI, HPI, CC
- DATA X1, X2 / 3.0E0, 20.0E0 /
- DATA PI,RTHPI / 3.14159265358979E+00, 7.97884560802865E-01/
- DATA HPI / 1.57079632679490E+00/
- DATA CC(1), CC(2), CC(3), CC(4), CC(5), CC(6), CC(7), CC(8)
- 1 / 5.77215664901533E-01,-4.20026350340952E-02,
- 2-4.21977345555443E-02, 7.21894324666300E-03,-2.15241674114900E-04,
- 3-2.01348547807000E-05, 1.13302723200000E-06, 6.11609500000000E-09/
- C***FIRST EXECUTABLE STATEMENT BESYNU
- AK = R1MACH(3)
- TOL = MAX(AK,1.0E-15)
- IF (X.LE.0.0E0) GO TO 270
- IF (FNU.LT.0.0E0) GO TO 280
- IF (N.LT.1) GO TO 290
- RX = 2.0E0/X
- INU = INT(FNU+0.5E0)
- DNU = FNU - INU
- IF (ABS(DNU).EQ.0.5E0) GO TO 260
- DNU2 = 0.0E0
- IF (ABS(DNU).LT.TOL) GO TO 10
- DNU2 = DNU*DNU
- 10 CONTINUE
- IF (X.GT.X1) GO TO 120
- C
- C SERIES FOR X.LE.X1
- C
- A1 = 1.0E0 - DNU
- A2 = 1.0E0 + DNU
- T1 = 1.0E0/GAMMA(A1)
- T2 = 1.0E0/GAMMA(A2)
- IF (ABS(DNU).GT.0.1E0) GO TO 40
- C SERIES FOR F0 TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
- S = CC(1)
- AK = 1.0E0
- DO 20 K=2,8
- AK = AK*DNU2
- TM = CC(K)*AK
- S = S + TM
- IF (ABS(TM).LT.TOL) GO TO 30
- 20 CONTINUE
- 30 G1 = -(S+S)
- GO TO 50
- 40 CONTINUE
- G1 = (T1-T2)/DNU
- 50 CONTINUE
- G2 = T1 + T2
- SMU = 1.0E0
- FC = 1.0E0/PI
- FLRX = LOG(RX)
- FMU = DNU*FLRX
- TM = 0.0E0
- IF (DNU.EQ.0.0E0) GO TO 60
- TM = SIN(DNU*HPI)/DNU
- TM = (DNU+DNU)*TM*TM
- FC = DNU/SIN(DNU*PI)
- IF (FMU.NE.0.0E0) SMU = SINH(FMU)/FMU
- 60 CONTINUE
- F = FC*(G1*COSH(FMU)+G2*FLRX*SMU)
- FX = EXP(FMU)
- P = FC*T1*FX
- Q = FC*T2/FX
- G = F + TM*Q
- AK = 1.0E0
- CK = 1.0E0
- BK = 1.0E0
- S1 = G
- S2 = P
- IF (INU.GT.0 .OR. N.GT.1) GO TO 90
- IF (X.LT.TOL) GO TO 80
- CX = X*X*0.25E0
- 70 CONTINUE
- F = (AK*F+P+Q)/(BK-DNU2)
- P = P/(AK-DNU)
- Q = Q/(AK+DNU)
- G = F + TM*Q
- CK = -CK*CX/AK
- T1 = CK*G
- S1 = S1 + T1
- BK = BK + AK + AK + 1.0E0
- AK = AK + 1.0E0
- S = ABS(T1)/(1.0E0+ABS(S1))
- IF (S.GT.TOL) GO TO 70
- 80 CONTINUE
- Y(1) = -S1
- RETURN
- 90 CONTINUE
- IF (X.LT.TOL) GO TO 110
- CX = X*X*0.25E0
- 100 CONTINUE
- F = (AK*F+P+Q)/(BK-DNU2)
- P = P/(AK-DNU)
- Q = Q/(AK+DNU)
- G = F + TM*Q
- CK = -CK*CX/AK
- T1 = CK*G
- S1 = S1 + T1
- T2 = CK*(P-AK*G)
- S2 = S2 + T2
- BK = BK + AK + AK + 1.0E0
- AK = AK + 1.0E0
- S = ABS(T1)/(1.0E0+ABS(S1)) + ABS(T2)/(1.0E0+ABS(S2))
- IF (S.GT.TOL) GO TO 100
- 110 CONTINUE
- S2 = -S2*RX
- S1 = -S1
- GO TO 160
- 120 CONTINUE
- COEF = RTHPI/SQRT(X)
- IF (X.GT.X2) GO TO 210
- C
- C MILLER ALGORITHM FOR X1.LT.X.LE.X2
- C
- ETEST = COS(PI*DNU)/(PI*X*TOL)
- FKS = 1.0E0
- FHS = 0.25E0
- FK = 0.0E0
- RCK = 2.0E0
- CCK = X + X
- RP1 = 0.0E0
- CP1 = 0.0E0
- RP2 = 1.0E0
- CP2 = 0.0E0
- K = 0
- 130 CONTINUE
- K = K + 1
- FK = FK + 1.0E0
- AK = (FHS-DNU2)/(FKS+FK)
- PT = FK + 1.0E0
- RBK = RCK/PT
- CBK = CCK/PT
- RPT = RP2
- CPT = CP2
- RP2 = RBK*RPT - CBK*CPT - AK*RP1
- CP2 = CBK*RPT + RBK*CPT - AK*CP1
- RP1 = RPT
- CP1 = CPT
- RB(K) = RBK
- CB(K) = CBK
- A(K) = AK
- RCK = RCK + 2.0E0
- FKS = FKS + FK + FK + 1.0E0
- FHS = FHS + FK + FK
- PT = MAX(ABS(RP1),ABS(CP1))
- FC = (RP1/PT)**2 + (CP1/PT)**2
- PT = PT*SQRT(FC)*FK
- IF (ETEST.GT.PT) GO TO 130
- KK = K
- RS = 1.0E0
- CS = 0.0E0
- RP1 = 0.0E0
- CP1 = 0.0E0
- RP2 = 1.0E0
- CP2 = 0.0E0
- DO 140 I=1,K
- RPT = RP2
- CPT = CP2
- RP2 = (RB(KK)*RPT-CB(KK)*CPT-RP1)/A(KK)
- CP2 = (CB(KK)*RPT+RB(KK)*CPT-CP1)/A(KK)
- RP1 = RPT
- CP1 = CPT
- RS = RS + RP2
- CS = CS + CP2
- KK = KK - 1
- 140 CONTINUE
- PT = MAX(ABS(RS),ABS(CS))
- FC = (RS/PT)**2 + (CS/PT)**2
- PT = PT*SQRT(FC)
- RS1 = (RP2*(RS/PT)+CP2*(CS/PT))/PT
- CS1 = (CP2*(RS/PT)-RP2*(CS/PT))/PT
- FC = HPI*(DNU-0.5E0) - X
- P = COS(FC)
- Q = SIN(FC)
- S1 = (CS1*Q-RS1*P)*COEF
- IF (INU.GT.0 .OR. N.GT.1) GO TO 150
- Y(1) = S1
- RETURN
- 150 CONTINUE
- PT = MAX(ABS(RP2),ABS(CP2))
- FC = (RP2/PT)**2 + (CP2/PT)**2
- PT = PT*SQRT(FC)
- RPT = DNU + 0.5E0 - (RP1*(RP2/PT)+CP1*(CP2/PT))/PT
- CPT = X - (CP1*(RP2/PT)-RP1*(CP2/PT))/PT
- CS2 = CS1*CPT - RS1*RPT
- RS2 = RPT*CS1 + RS1*CPT
- S2 = (RS2*Q+CS2*P)*COEF/X
- C
- C FORWARD RECURSION ON THE THREE TERM RECURSION RELATION
- C
- 160 CONTINUE
- CK = (DNU+DNU+2.0E0)/X
- IF (N.EQ.1) INU = INU - 1
- IF (INU.GT.0) GO TO 170
- IF (N.GT.1) GO TO 190
- S1 = S2
- GO TO 190
- 170 CONTINUE
- DO 180 I=1,INU
- ST = S2
- S2 = CK*S2 - S1
- S1 = ST
- CK = CK + RX
- 180 CONTINUE
- IF (N.EQ.1) S1 = S2
- 190 CONTINUE
- Y(1) = S1
- IF (N.EQ.1) RETURN
- Y(2) = S2
- IF (N.EQ.2) RETURN
- DO 200 I=3,N
- Y(I) = CK*Y(I-1) - Y(I-2)
- CK = CK + RX
- 200 CONTINUE
- RETURN
- C
- C ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2
- C
- 210 CONTINUE
- NN = 2
- IF (INU.EQ.0 .AND. N.EQ.1) NN = 1
- DNU2 = DNU + DNU
- FMU = 0.0E0
- IF (ABS(DNU2).LT.TOL) GO TO 220
- FMU = DNU2*DNU2
- 220 CONTINUE
- ARG = X - HPI*(DNU+0.5E0)
- SA = SIN(ARG)
- SB = COS(ARG)
- ETX = 8.0E0*X
- DO 250 K=1,NN
- S1 = S2
- T2 = (FMU-1.0E0)/ETX
- SS = T2
- RELB = TOL*ABS(T2)
- T1 = ETX
- S = 1.0E0
- FN = 1.0E0
- AK = 0.0E0
- DO 230 J=1,13
- T1 = T1 + ETX
- AK = AK + 8.0E0
- FN = FN + AK
- T2 = -T2*(FMU-FN)/T1
- S = S + T2
- T1 = T1 + ETX
- AK = AK + 8.0E0
- FN = FN + AK
- T2 = T2*(FMU-FN)/T1
- SS = SS + T2
- IF (ABS(T2).LE.RELB) GO TO 240
- 230 CONTINUE
- 240 S2 = COEF*(S*SA+SS*SB)
- FMU = FMU + 8.0E0*DNU + 4.0E0
- TB = SA
- SA = -SB
- SB = TB
- 250 CONTINUE
- IF (NN.GT.1) GO TO 160
- S1 = S2
- GO TO 190
- C
- C FNU=HALF ODD INTEGER CASE
- C
- 260 CONTINUE
- COEF = RTHPI/SQRT(X)
- S1 = COEF*SIN(X)
- S2 = -COEF*COS(X)
- GO TO 160
- C
- C
- 270 CALL XERMSG ('SLATEC', 'BESYNU', 'X NOT GREATER THAN ZERO', 2, 1)
- RETURN
- 280 CALL XERMSG ('SLATEC', 'BESYNU', 'FNU NOT ZERO OR POSITIVE', 2,
- + 1)
- RETURN
- 290 CALL XERMSG ('SLATEC', 'BESYNU', 'N NOT GREATER THAN 0', 2, 1)
- RETURN
- END
|