e_j0.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /* @(#)e_j0.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include <sys/cdefs.h>
  13. __FBSDID("$FreeBSD$");
  14. /* __ieee754_j0(x), __ieee754_y0(x)
  15. * Bessel function of the first and second kinds of order zero.
  16. * Method -- j0(x):
  17. * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
  18. * 2. Reduce x to |x| since j0(x)=j0(-x), and
  19. * for x in (0,2)
  20. * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
  21. * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
  22. * for x in (2,inf)
  23. * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
  24. * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
  25. * as follow:
  26. * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  27. * = 1/sqrt(2) * (cos(x) + sin(x))
  28. * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
  29. * = 1/sqrt(2) * (sin(x) - cos(x))
  30. * (To avoid cancellation, use
  31. * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  32. * to compute the worse one.)
  33. *
  34. * 3 Special cases
  35. * j0(nan)= nan
  36. * j0(0) = 1
  37. * j0(inf) = 0
  38. *
  39. * Method -- y0(x):
  40. * 1. For x<2.
  41. * Since
  42. * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
  43. * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
  44. * We use the following function to approximate y0,
  45. * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
  46. * where
  47. * U(z) = u00 + u01*z + ... + u06*z^6
  48. * V(z) = 1 + v01*z + ... + v04*z^4
  49. * with absolute approximation error bounded by 2**-72.
  50. * Note: For tiny x, U/V = u0 and j0(x)~1, hence
  51. * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
  52. * 2. For x>=2.
  53. * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
  54. * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
  55. * by the method mentioned above.
  56. * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
  57. */
  58. #include "math.h"
  59. #include "math_private.h"
  60. static __inline double pzero(double), qzero(double);
  61. static const volatile double vone = 1, vzero = 0;
  62. static const double
  63. huge = 1e300,
  64. one = 1.0,
  65. invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
  66. tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
  67. /* R0/S0 on [0, 2.00] */
  68. R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
  69. R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
  70. R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
  71. R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
  72. S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
  73. S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
  74. S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
  75. S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
  76. static const double zero = 0.0;
  77. double
  78. __ieee754_j0(double x)
  79. {
  80. double z, s,c,ss,cc,r,u,v;
  81. int32_t hx,ix;
  82. GET_HIGH_WORD(hx,x);
  83. ix = hx&0x7fffffff;
  84. if(ix>=0x7ff00000) return one/(x*x);
  85. x = fabs(x);
  86. if(ix >= 0x40000000) { /* |x| >= 2.0 */
  87. s = sin(x);
  88. c = cos(x);
  89. ss = s-c;
  90. cc = s+c;
  91. if(ix<0x7fe00000) { /* make sure x+x not overflow */
  92. z = -cos(x+x);
  93. if ((s*c)<zero) cc = z/ss;
  94. else ss = z/cc;
  95. }
  96. /*
  97. * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  98. * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  99. */
  100. if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
  101. else {
  102. u = pzero(x); v = qzero(x);
  103. z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
  104. }
  105. return z;
  106. }
  107. if(ix<0x3f200000) { /* |x| < 2**-13 */
  108. if(huge+x>one) { /* raise inexact if x != 0 */
  109. if(ix<0x3e400000) return one; /* |x|<2**-27 */
  110. else return one - x*x/4;
  111. }
  112. }
  113. z = x*x;
  114. r = z*(R02+z*(R03+z*(R04+z*R05)));
  115. s = one+z*(S01+z*(S02+z*(S03+z*S04)));
  116. if(ix < 0x3FF00000) { /* |x| < 1.00 */
  117. return one + z*(-0.25+(r/s));
  118. } else {
  119. u = 0.5*x;
  120. return((one+u)*(one-u)+z*(r/s));
  121. }
  122. }
  123. static const double
  124. u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
  125. u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
  126. u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
  127. u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
  128. u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
  129. u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
  130. u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
  131. v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
  132. v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
  133. v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
  134. v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
  135. double
  136. __ieee754_y0(double x)
  137. {
  138. double z, s,c,ss,cc,u,v;
  139. int32_t hx,ix,lx;
  140. EXTRACT_WORDS(hx,lx,x);
  141. ix = 0x7fffffff&hx;
  142. /*
  143. * y0(NaN) = NaN.
  144. * y0(Inf) = 0.
  145. * y0(-Inf) = NaN and raise invalid exception.
  146. */
  147. if(ix>=0x7ff00000) return vone/(x+x*x);
  148. /* y0(+-0) = -inf and raise divide-by-zero exception. */
  149. if((ix|lx)==0) return -one/vzero;
  150. /* y0(x<0) = NaN and raise invalid exception. */
  151. if(hx<0) return vzero/vzero;
  152. if(ix >= 0x40000000) { /* |x| >= 2.0 */
  153. /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
  154. * where x0 = x-pi/4
  155. * Better formula:
  156. * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  157. * = 1/sqrt(2) * (sin(x) + cos(x))
  158. * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  159. * = 1/sqrt(2) * (sin(x) - cos(x))
  160. * To avoid cancellation, use
  161. * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  162. * to compute the worse one.
  163. */
  164. s = sin(x);
  165. c = cos(x);
  166. ss = s-c;
  167. cc = s+c;
  168. /*
  169. * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  170. * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  171. */
  172. if(ix<0x7fe00000) { /* make sure x+x not overflow */
  173. z = -cos(x+x);
  174. if ((s*c)<zero) cc = z/ss;
  175. else ss = z/cc;
  176. }
  177. if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
  178. else {
  179. u = pzero(x); v = qzero(x);
  180. z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
  181. }
  182. return z;
  183. }
  184. if(ix<=0x3e400000) { /* x < 2**-27 */
  185. return(u00 + tpi*__ieee754_log(x));
  186. }
  187. z = x*x;
  188. u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
  189. v = one+z*(v01+z*(v02+z*(v03+z*v04)));
  190. return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
  191. }
  192. /* The asymptotic expansions of pzero is
  193. * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
  194. * For x >= 2, We approximate pzero by
  195. * pzero(x) = 1 + (R/S)
  196. * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
  197. * S = 1 + pS0*s^2 + ... + pS4*s^10
  198. * and
  199. * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
  200. */
  201. static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  202. 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
  203. -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
  204. -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
  205. -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
  206. -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
  207. -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
  208. };
  209. static const double pS8[5] = {
  210. 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
  211. 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
  212. 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
  213. 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
  214. 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
  215. };
  216. static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  217. -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
  218. -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
  219. -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
  220. -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
  221. -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
  222. -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
  223. };
  224. static const double pS5[5] = {
  225. 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
  226. 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
  227. 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
  228. 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
  229. 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
  230. };
  231. static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  232. -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
  233. -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
  234. -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
  235. -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
  236. -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
  237. -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
  238. };
  239. static const double pS3[5] = {
  240. 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
  241. 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
  242. 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
  243. 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
  244. 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
  245. };
  246. static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  247. -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
  248. -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
  249. -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
  250. -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
  251. -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
  252. -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
  253. };
  254. static const double pS2[5] = {
  255. 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
  256. 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
  257. 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
  258. 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
  259. 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
  260. };
  261. static __inline double
  262. pzero(double x)
  263. {
  264. const double *p,*q;
  265. double z,r,s;
  266. int32_t ix;
  267. GET_HIGH_WORD(ix,x);
  268. ix &= 0x7fffffff;
  269. if(ix>=0x40200000) {p = pR8; q= pS8;}
  270. else if(ix>=0x40122E8B){p = pR5; q= pS5;}
  271. else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
  272. else {p = pR2; q= pS2;} /* ix>=0x40000000 */
  273. z = one/(x*x);
  274. r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  275. s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
  276. return one+ r/s;
  277. }
  278. /* For x >= 8, the asymptotic expansions of qzero is
  279. * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  280. * We approximate pzero by
  281. * qzero(x) = s*(-1.25 + (R/S))
  282. * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
  283. * S = 1 + qS0*s^2 + ... + qS5*s^12
  284. * and
  285. * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
  286. */
  287. static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  288. 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
  289. 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
  290. 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
  291. 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
  292. 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
  293. 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
  294. };
  295. static const double qS8[6] = {
  296. 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
  297. 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
  298. 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
  299. 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
  300. 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
  301. -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
  302. };
  303. static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  304. 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
  305. 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
  306. 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
  307. 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
  308. 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
  309. 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
  310. };
  311. static const double qS5[6] = {
  312. 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
  313. 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
  314. 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
  315. 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
  316. 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
  317. -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
  318. };
  319. static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  320. 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
  321. 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
  322. 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
  323. 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
  324. 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
  325. 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
  326. };
  327. static const double qS3[6] = {
  328. 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
  329. 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
  330. 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
  331. 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
  332. 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
  333. -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
  334. };
  335. static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  336. 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
  337. 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
  338. 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
  339. 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
  340. 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
  341. 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
  342. };
  343. static const double qS2[6] = {
  344. 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
  345. 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
  346. 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
  347. 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
  348. 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
  349. -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
  350. };
  351. static __inline double
  352. qzero(double x)
  353. {
  354. const double *p,*q;
  355. double s,r,z;
  356. int32_t ix;
  357. GET_HIGH_WORD(ix,x);
  358. ix &= 0x7fffffff;
  359. if(ix>=0x40200000) {p = qR8; q= qS8;}
  360. else if(ix>=0x40122E8B){p = qR5; q= qS5;}
  361. else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
  362. else {p = qR2; q= qS2;} /* ix>=0x40000000 */
  363. z = one/(x*x);
  364. r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
  365. s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
  366. return (-.125 + r/s)/x;
  367. }