e_sqrt.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451
  1. /* @(#)e_sqrt.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include <sys/cdefs.h>
  13. /* __ieee754_sqrt(x)
  14. * Return correctly rounded sqrt.
  15. * ------------------------------------------
  16. * | Use the hardware sqrt if you have one |
  17. * ------------------------------------------
  18. * Method:
  19. * Bit by bit method using integer arithmetic. (Slow, but portable)
  20. * 1. Normalization
  21. * Scale x to y in [1,4) with even powers of 2:
  22. * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
  23. * sqrt(x) = 2^k * sqrt(y)
  24. * 2. Bit by bit computation
  25. * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
  26. * i 0
  27. * i+1 2
  28. * s = 2*q , and y = 2 * ( y - q ). (1)
  29. * i i i i
  30. *
  31. * To compute q from q , one checks whether
  32. * i+1 i
  33. *
  34. * -(i+1) 2
  35. * (q + 2 ) <= y. (2)
  36. * i
  37. * -(i+1)
  38. * If (2) is false, then q = q ; otherwise q = q + 2 .
  39. * i+1 i i+1 i
  40. *
  41. * With some algebric manipulation, it is not difficult to see
  42. * that (2) is equivalent to
  43. * -(i+1)
  44. * s + 2 <= y (3)
  45. * i i
  46. *
  47. * The advantage of (3) is that s and y can be computed by
  48. * i i
  49. * the following recurrence formula:
  50. * if (3) is false
  51. *
  52. * s = s , y = y ; (4)
  53. * i+1 i i+1 i
  54. *
  55. * otherwise,
  56. * -i -(i+1)
  57. * s = s + 2 , y = y - s - 2 (5)
  58. * i+1 i i+1 i i
  59. *
  60. * One may easily use induction to prove (4) and (5).
  61. * Note. Since the left hand side of (3) contain only i+2 bits,
  62. * it does not necessary to do a full (53-bit) comparison
  63. * in (3).
  64. * 3. Final rounding
  65. * After generating the 53 bits result, we compute one more bit.
  66. * Together with the remainder, we can decide whether the
  67. * result is exact, bigger than 1/2ulp, or less than 1/2ulp
  68. * (it will never equal to 1/2ulp).
  69. * The rounding mode can be detected by checking whether
  70. * huge + tiny is equal to huge, and whether huge - tiny is
  71. * equal to huge for some floating point number "huge" and "tiny".
  72. *
  73. * Special cases:
  74. * sqrt(+-0) = +-0 ... exact
  75. * sqrt(inf) = inf
  76. * sqrt(-ve) = NaN ... with invalid signal
  77. * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
  78. *
  79. * Other methods : see the appended file at the end of the program below.
  80. *---------------
  81. */
  82. #include <float.h>
  83. #include "openlibm.h"
  84. #include "math_private.h"
  85. static const double one = 1.0, tiny=1.0e-300;
  86. double
  87. __ieee754_sqrt(double x)
  88. {
  89. double z;
  90. int32_t sign = (int)0x80000000;
  91. int32_t ix0,s0,q,m,t,i;
  92. u_int32_t r,t1,s1,ix1,q1;
  93. EXTRACT_WORDS(ix0,ix1,x);
  94. /* take care of Inf and NaN */
  95. if((ix0&0x7ff00000)==0x7ff00000) {
  96. return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
  97. sqrt(-inf)=sNaN */
  98. }
  99. /* take care of zero */
  100. if(ix0<=0) {
  101. if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
  102. else if(ix0<0)
  103. return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
  104. }
  105. /* normalize x */
  106. m = (ix0>>20);
  107. if(m==0) { /* subnormal x */
  108. while(ix0==0) {
  109. m -= 21;
  110. ix0 |= (ix1>>11); ix1 <<= 21;
  111. }
  112. for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
  113. m -= i-1;
  114. ix0 |= (ix1>>(32-i));
  115. ix1 <<= i;
  116. }
  117. m -= 1023; /* unbias exponent */
  118. ix0 = (ix0&0x000fffff)|0x00100000;
  119. if(m&1){ /* odd m, double x to make it even */
  120. ix0 += ix0 + ((ix1&sign)>>31);
  121. ix1 += ix1;
  122. }
  123. m >>= 1; /* m = [m/2] */
  124. /* generate sqrt(x) bit by bit */
  125. ix0 += ix0 + ((ix1&sign)>>31);
  126. ix1 += ix1;
  127. q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
  128. r = 0x00200000; /* r = moving bit from right to left */
  129. while(r!=0) {
  130. t = s0+r;
  131. if(t<=ix0) {
  132. s0 = t+r;
  133. ix0 -= t;
  134. q += r;
  135. }
  136. ix0 += ix0 + ((ix1&sign)>>31);
  137. ix1 += ix1;
  138. r>>=1;
  139. }
  140. r = sign;
  141. while(r!=0) {
  142. t1 = s1+r;
  143. t = s0;
  144. if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
  145. s1 = t1+r;
  146. if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
  147. ix0 -= t;
  148. if (ix1 < t1) ix0 -= 1;
  149. ix1 -= t1;
  150. q1 += r;
  151. }
  152. ix0 += ix0 + ((ix1&sign)>>31);
  153. ix1 += ix1;
  154. r>>=1;
  155. }
  156. /* use floating add to find out rounding direction */
  157. if((ix0|ix1)!=0) {
  158. z = one-tiny; /* trigger inexact flag */
  159. if (z>=one) {
  160. z = one+tiny;
  161. if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
  162. else if (z>one) {
  163. if (q1==(u_int32_t)0xfffffffe) q+=1;
  164. q1+=2;
  165. } else
  166. q1 += (q1&1);
  167. }
  168. }
  169. ix0 = (q>>1)+0x3fe00000;
  170. ix1 = q1>>1;
  171. if ((q&1)==1) ix1 |= sign;
  172. ix0 += (m <<20);
  173. INSERT_WORDS(z,ix0,ix1);
  174. return z;
  175. }
  176. #if (LDBL_MANT_DIG == 53)
  177. __weak_reference(sqrt, sqrtl);
  178. #endif
  179. /*
  180. Other methods (use floating-point arithmetic)
  181. -------------
  182. (This is a copy of a drafted paper by Prof W. Kahan
  183. and K.C. Ng, written in May, 1986)
  184. Two algorithms are given here to implement sqrt(x)
  185. (IEEE double precision arithmetic) in software.
  186. Both supply sqrt(x) correctly rounded. The first algorithm (in
  187. Section A) uses newton iterations and involves four divisions.
  188. The second one uses reciproot iterations to avoid division, but
  189. requires more multiplications. Both algorithms need the ability
  190. to chop results of arithmetic operations instead of round them,
  191. and the INEXACT flag to indicate when an arithmetic operation
  192. is executed exactly with no roundoff error, all part of the
  193. standard (IEEE 754-1985). The ability to perform shift, add,
  194. subtract and logical AND operations upon 32-bit words is needed
  195. too, though not part of the standard.
  196. A. sqrt(x) by Newton Iteration
  197. (1) Initial approximation
  198. Let x0 and x1 be the leading and the trailing 32-bit words of
  199. a floating point number x (in IEEE double format) respectively
  200. 1 11 52 ...widths
  201. ------------------------------------------------------
  202. x: |s| e | f |
  203. ------------------------------------------------------
  204. msb lsb msb lsb ...order
  205. ------------------------ ------------------------
  206. x0: |s| e | f1 | x1: | f2 |
  207. ------------------------ ------------------------
  208. By performing shifts and subtracts on x0 and x1 (both regarded
  209. as integers), we obtain an 8-bit approximation of sqrt(x) as
  210. follows.
  211. k := (x0>>1) + 0x1ff80000;
  212. y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
  213. Here k is a 32-bit integer and T1[] is an integer array containing
  214. correction terms. Now magically the floating value of y (y's
  215. leading 32-bit word is y0, the value of its trailing word is 0)
  216. approximates sqrt(x) to almost 8-bit.
  217. Value of T1:
  218. static int T1[32]= {
  219. 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
  220. 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
  221. 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
  222. 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
  223. (2) Iterative refinement
  224. Apply Heron's rule three times to y, we have y approximates
  225. sqrt(x) to within 1 ulp (Unit in the Last Place):
  226. y := (y+x/y)/2 ... almost 17 sig. bits
  227. y := (y+x/y)/2 ... almost 35 sig. bits
  228. y := y-(y-x/y)/2 ... within 1 ulp
  229. Remark 1.
  230. Another way to improve y to within 1 ulp is:
  231. y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
  232. y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
  233. 2
  234. (x-y )*y
  235. y := y + 2* ---------- ...within 1 ulp
  236. 2
  237. 3y + x
  238. This formula has one division fewer than the one above; however,
  239. it requires more multiplications and additions. Also x must be
  240. scaled in advance to avoid spurious overflow in evaluating the
  241. expression 3y*y+x. Hence it is not recommended uless division
  242. is slow. If division is very slow, then one should use the
  243. reciproot algorithm given in section B.
  244. (3) Final adjustment
  245. By twiddling y's last bit it is possible to force y to be
  246. correctly rounded according to the prevailing rounding mode
  247. as follows. Let r and i be copies of the rounding mode and
  248. inexact flag before entering the square root program. Also we
  249. use the expression y+-ulp for the next representable floating
  250. numbers (up and down) of y. Note that y+-ulp = either fixed
  251. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  252. mode.
  253. I := FALSE; ... reset INEXACT flag I
  254. R := RZ; ... set rounding mode to round-toward-zero
  255. z := x/y; ... chopped quotient, possibly inexact
  256. If(not I) then { ... if the quotient is exact
  257. if(z=y) {
  258. I := i; ... restore inexact flag
  259. R := r; ... restore rounded mode
  260. return sqrt(x):=y.
  261. } else {
  262. z := z - ulp; ... special rounding
  263. }
  264. }
  265. i := TRUE; ... sqrt(x) is inexact
  266. If (r=RN) then z=z+ulp ... rounded-to-nearest
  267. If (r=RP) then { ... round-toward-+inf
  268. y = y+ulp; z=z+ulp;
  269. }
  270. y := y+z; ... chopped sum
  271. y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
  272. I := i; ... restore inexact flag
  273. R := r; ... restore rounded mode
  274. return sqrt(x):=y.
  275. (4) Special cases
  276. Square root of +inf, +-0, or NaN is itself;
  277. Square root of a negative number is NaN with invalid signal.
  278. B. sqrt(x) by Reciproot Iteration
  279. (1) Initial approximation
  280. Let x0 and x1 be the leading and the trailing 32-bit words of
  281. a floating point number x (in IEEE double format) respectively
  282. (see section A). By performing shifs and subtracts on x0 and y0,
  283. we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
  284. k := 0x5fe80000 - (x0>>1);
  285. y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
  286. Here k is a 32-bit integer and T2[] is an integer array
  287. containing correction terms. Now magically the floating
  288. value of y (y's leading 32-bit word is y0, the value of
  289. its trailing word y1 is set to zero) approximates 1/sqrt(x)
  290. to almost 7.8-bit.
  291. Value of T2:
  292. static int T2[64]= {
  293. 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
  294. 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
  295. 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
  296. 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
  297. 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
  298. 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
  299. 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
  300. 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
  301. (2) Iterative refinement
  302. Apply Reciproot iteration three times to y and multiply the
  303. result by x to get an approximation z that matches sqrt(x)
  304. to about 1 ulp. To be exact, we will have
  305. -1ulp < sqrt(x)-z<1.0625ulp.
  306. ... set rounding mode to Round-to-nearest
  307. y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
  308. y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
  309. ... special arrangement for better accuracy
  310. z := x*y ... 29 bits to sqrt(x), with z*y<1
  311. z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
  312. Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
  313. (a) the term z*y in the final iteration is always less than 1;
  314. (b) the error in the final result is biased upward so that
  315. -1 ulp < sqrt(x) - z < 1.0625 ulp
  316. instead of |sqrt(x)-z|<1.03125ulp.
  317. (3) Final adjustment
  318. By twiddling y's last bit it is possible to force y to be
  319. correctly rounded according to the prevailing rounding mode
  320. as follows. Let r and i be copies of the rounding mode and
  321. inexact flag before entering the square root program. Also we
  322. use the expression y+-ulp for the next representable floating
  323. numbers (up and down) of y. Note that y+-ulp = either fixed
  324. point y+-1, or multiply y by nextafter(1,+-inf) in chopped
  325. mode.
  326. R := RZ; ... set rounding mode to round-toward-zero
  327. switch(r) {
  328. case RN: ... round-to-nearest
  329. if(x<= z*(z-ulp)...chopped) z = z - ulp; else
  330. if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
  331. break;
  332. case RZ:case RM: ... round-to-zero or round-to--inf
  333. R:=RP; ... reset rounding mod to round-to-+inf
  334. if(x<z*z ... rounded up) z = z - ulp; else
  335. if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
  336. break;
  337. case RP: ... round-to-+inf
  338. if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
  339. if(x>z*z ...chopped) z = z+ulp;
  340. break;
  341. }
  342. Remark 3. The above comparisons can be done in fixed point. For
  343. example, to compare x and w=z*z chopped, it suffices to compare
  344. x1 and w1 (the trailing parts of x and w), regarding them as
  345. two's complement integers.
  346. ...Is z an exact square root?
  347. To determine whether z is an exact square root of x, let z1 be the
  348. trailing part of z, and also let x0 and x1 be the leading and
  349. trailing parts of x.
  350. If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
  351. I := 1; ... Raise Inexact flag: z is not exact
  352. else {
  353. j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
  354. k := z1 >> 26; ... get z's 25-th and 26-th
  355. fraction bits
  356. I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
  357. }
  358. R:= r ... restore rounded mode
  359. return sqrt(x):=z.
  360. If multiplication is cheaper then the foregoing red tape, the
  361. Inexact flag can be evaluated by
  362. I := i;
  363. I := (z*z!=x) or I.
  364. Note that z*z can overwrite I; this value must be sensed if it is
  365. True.
  366. Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
  367. zero.
  368. --------------------
  369. z1: | f2 |
  370. --------------------
  371. bit 31 bit 0
  372. Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
  373. or even of logb(x) have the following relations:
  374. -------------------------------------------------
  375. bit 27,26 of z1 bit 1,0 of x1 logb(x)
  376. -------------------------------------------------
  377. 00 00 odd and even
  378. 01 01 even
  379. 10 10 odd
  380. 10 00 even
  381. 11 01 even
  382. -------------------------------------------------
  383. (4) Special cases (see (4) of Section A).
  384. */