k_sinl.c 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. /* From: @(#)k_sin.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
  6. *
  7. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  8. * Permission to use, copy, modify, and distribute this
  9. * software is freely granted, provided that this notice
  10. * is preserved.
  11. * ====================================================
  12. */
  13. #include <sys/cdefs.h>
  14. /*
  15. * ld128 version of k_sin.c. See ../src/k_sin.c for most comments.
  16. */
  17. #include "math_private.h"
  18. static const double
  19. half = 0.5;
  20. /*
  21. * Domain [-0.7854, 0.7854], range ~[-1.53e-37, 1.659e-37]
  22. * |sin(x)/x - s(x)| < 2**-122.1
  23. *
  24. * See ../ld80/k_cosl.c for more details about the polynomial.
  25. */
  26. static const long double
  27. S1 = -0.16666666666666666666666666666666666606732416116558L,
  28. S2 = 0.0083333333333333333333333333333331135404851288270047L,
  29. S3 = -0.00019841269841269841269841269839935785325638310428717L,
  30. S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
  31. S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
  32. S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
  33. S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
  34. S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
  35. static const double
  36. S9 = -0.82206352458348947812512122163446202498005154296863e-17,
  37. S10 = 0.19572940011906109418080609928334380560135358385256e-19,
  38. S11 = -0.38680813379701966970673724299207480965452616911420e-22,
  39. S12 = 0.64038150078671872796678569586315881020659912139412e-25;
  40. long double
  41. __kernel_sinl(long double x, long double y, int iy)
  42. {
  43. long double z,r,v;
  44. z = x*x;
  45. v = z*x;
  46. r = S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+
  47. z*(S9+z*(S10+z*(S11+z*S12)))))))));
  48. if(iy==0) return x+v*(S1+z*r);
  49. else return x-((z*(half*y-v*r)-y)-v*S1);
  50. }