k_tanl.c 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. /* From: @(#)k_tan.c 1.5 04/04/22 SMI */
  2. /*
  3. * ====================================================
  4. * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
  5. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
  6. *
  7. * Permission to use, copy, modify, and distribute this
  8. * software is freely granted, provided that this notice
  9. * is preserved.
  10. * ====================================================
  11. */
  12. #include <sys/cdefs.h>
  13. /*
  14. * ld128 version of k_tan.c. See ../src/k_tan.c for most comments.
  15. */
  16. #include "openlibm.h"
  17. #include "math_private.h"
  18. /*
  19. * Domain [-0.67434, 0.67434], range ~[-3.37e-36, 1.982e-37]
  20. * |tan(x)/x - t(x)| < 2**-117.8 (XXX should be ~1e-37)
  21. *
  22. * See ../ld80/k_cosl.c for more details about the polynomial.
  23. */
  24. static const long double
  25. T3 = 0x1.5555555555555555555555555553p-2L,
  26. T5 = 0x1.1111111111111111111111111eb5p-3L,
  27. T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
  28. T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
  29. T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
  30. T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
  31. T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
  32. T17 = 0x1.355824803674477dfcf726649efep-11L,
  33. T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
  34. T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
  35. T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
  36. T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
  37. T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
  38. T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
  39. T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
  40. T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
  41. T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
  42. T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
  43. pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
  44. pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
  45. static const double
  46. T39 = 0.000000028443389121318352, /* 0x1e8a7592977938.0p-78 */
  47. T41 = 0.000000011981013102001973, /* 0x19baa1b1223219.0p-79 */
  48. T43 = 0.0000000038303578044958070, /* 0x107385dfb24529.0p-80 */
  49. T45 = 0.0000000034664378216909893, /* 0x1dc6c702a05262.0p-81 */
  50. T47 = -0.0000000015090641701997785, /* -0x19ecef3569ebb6.0p-82 */
  51. T49 = 0.0000000029449552300483952, /* 0x194c0668da786a.0p-81 */
  52. T51 = -0.0000000022006995706097711, /* -0x12e763b8845268.0p-81 */
  53. T53 = 0.0000000015468200913196612, /* 0x1a92fc98c29554.0p-82 */
  54. T55 = -0.00000000061311613386849674, /* -0x151106cbc779a9.0p-83 */
  55. T57 = 1.4912469681508012e-10; /* 0x147edbdba6f43a.0p-85 */
  56. long double
  57. __kernel_tanl(long double x, long double y, int iy) {
  58. long double z, r, v, w, s;
  59. long double osign;
  60. int i;
  61. iy = (iy == 1 ? -1 : 1); /* XXX recover original interface */
  62. osign = (x >= 0 ? 1.0 : -1.0); /* XXX slow, probably wrong for -0 */
  63. if (fabsl(x) >= 0.67434) {
  64. if (x < 0) {
  65. x = -x;
  66. y = -y;
  67. }
  68. z = pio4 - x;
  69. w = pio4lo - y;
  70. x = z + w;
  71. y = 0.0;
  72. i = 1;
  73. } else
  74. i = 0;
  75. z = x * x;
  76. w = z * z;
  77. r = T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 +
  78. w * (T25 + w * (T29 + w * (T33 +
  79. w * (T37 + w * (T41 + w * (T45 + w * (T49 + w * (T53 +
  80. w * T57))))))))))));
  81. v = z * (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 +
  82. w * (T27 + w * (T31 + w * (T35 +
  83. w * (T39 + w * (T43 + w * (T47 + w * (T51 + w * T55))))))))))));
  84. s = z * x;
  85. r = y + z * (s * (r + v) + y);
  86. r += T3 * s;
  87. w = x + r;
  88. if (i == 1) {
  89. v = (long double) iy;
  90. return osign *
  91. (v - 2.0 * (x - (w * w / (w + v) - r)));
  92. }
  93. if (iy == 1)
  94. return w;
  95. else {
  96. /*
  97. * if allow error up to 2 ulp, simply return
  98. * -1.0 / (x+r) here
  99. */
  100. /* compute -1.0 / (x+r) accurately */
  101. long double a, t;
  102. z = w;
  103. z = z + 0x1p32 - 0x1p32;
  104. v = r - (z - x); /* z+v = r+x */
  105. t = a = -1.0 / w; /* a = -1.0/w */
  106. t = t + 0x1p32 - 0x1p32;
  107. s = 1.0 + t * z;
  108. return t + a * (s + t * v);
  109. }
  110. }