zairy.f 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
  2. C***BEGIN PROLOGUE ZAIRY
  3. C***DATE WRITTEN 830501 (YYMMDD)
  4. C***REVISION DATE 890801 (YYMMDD)
  5. C***CATEGORY NO. B5K
  6. C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
  7. C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
  8. C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
  9. C***DESCRIPTION
  10. C
  11. C ***A DOUBLE PRECISION ROUTINE***
  12. C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
  13. C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
  14. C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
  15. C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
  16. C -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN
  17. C PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
  18. C
  19. C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
  20. C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
  21. C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
  22. C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
  23. C MATHEMATICAL FUNCTIONS (REF. 1).
  24. C
  25. C INPUT ZR,ZI ARE DOUBLE PRECISION
  26. C ZR,ZI - Z=CMPLX(ZR,ZI)
  27. C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
  28. C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
  29. C KODE= 1 RETURNS
  30. C AI=AI(Z) ON ID=0 OR
  31. C AI=DAI(Z)/DZ ON ID=1
  32. C = 2 RETURNS
  33. C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
  34. C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
  35. C ZTA=(2/3)*Z*CSQRT(Z)
  36. C
  37. C OUTPUT AIR,AII ARE DOUBLE PRECISION
  38. C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
  39. C KODE
  40. C NZ - UNDERFLOW INDICATOR
  41. C NZ= 0 , NORMAL RETURN
  42. C NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN
  43. C -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1
  44. C IERR - ERROR FLAG
  45. C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
  46. C IERR=1, INPUT ERROR - NO COMPUTATION
  47. C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
  48. C TOO LARGE ON KODE=1
  49. C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
  50. C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
  51. C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
  52. C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
  53. C COMPLETE LOSS OF ACCURACY BY ARGUMENT
  54. C REDUCTION
  55. C IERR=5, ERROR - NO COMPUTATION,
  56. C ALGORITHM TERMINATION CONDITION NOT MET
  57. C
  58. C***LONG DESCRIPTION
  59. C
  60. C AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL
  61. C FUNCTIONS BY
  62. C
  63. C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
  64. C C=1.0/(PI*SQRT(3.0))
  65. C ZTA=(2/3)*Z**(3/2)
  66. C
  67. C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
  68. C
  69. C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
  70. C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
  71. C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
  72. C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
  73. C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
  74. C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
  75. C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
  76. C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
  77. C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
  78. C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
  79. C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
  80. C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
  81. C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
  82. C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
  83. C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
  84. C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
  85. C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
  86. C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
  87. C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
  88. C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
  89. C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
  90. C MACHINES.
  91. C
  92. C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
  93. C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
  94. C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
  95. C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
  96. C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
  97. C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
  98. C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
  99. C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
  100. C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
  101. C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
  102. C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
  103. C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
  104. C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
  105. C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
  106. C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
  107. C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
  108. C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
  109. C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
  110. C OR -PI/2+P.
  111. C
  112. C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
  113. C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
  114. C COMMERCE, 1955.
  115. C
  116. C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
  117. C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
  118. C
  119. C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
  120. C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
  121. C 1018, MAY, 1985
  122. C
  123. C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
  124. C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
  125. C MATH. SOFTWARE, 1986
  126. C
  127. C***ROUTINES CALLED ZACAI,ZBKNU,ZEXP,ZSQRT,I1MACH,D1MACH
  128. C***END PROLOGUE ZAIRY
  129. C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
  130. DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
  131. * CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
  132. * DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
  133. * S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
  134. * ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB
  135. INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
  136. DIMENSION CYR(1), CYI(1)
  137. DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
  138. * 3.55028053887817240D-01,2.58819403792806799D-01,
  139. * 1.83776298473930683D-01/
  140. DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
  141. C***FIRST EXECUTABLE STATEMENT ZAIRY
  142. IERR = 0
  143. NZ=0
  144. IF (ID.LT.0 .OR. ID.GT.1) IERR=1
  145. IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
  146. IF (IERR.NE.0) RETURN
  147. AZ = ZABS(COMPLEX(ZR,ZI))
  148. TOL = DMAX1(D1MACH(4),1.0D-18)
  149. FID = DBLE(FLOAT(ID))
  150. IF (AZ.GT.1.0D0) GO TO 70
  151. C-----------------------------------------------------------------------
  152. C POWER SERIES FOR CABS(Z).LE.1.
  153. C-----------------------------------------------------------------------
  154. S1R = CONER
  155. S1I = CONEI
  156. S2R = CONER
  157. S2I = CONEI
  158. IF (AZ.LT.TOL) GO TO 170
  159. AA = AZ*AZ
  160. IF (AA.LT.TOL/AZ) GO TO 40
  161. TRM1R = CONER
  162. TRM1I = CONEI
  163. TRM2R = CONER
  164. TRM2I = CONEI
  165. ATRM = 1.0D0
  166. STR = ZR*ZR - ZI*ZI
  167. STI = ZR*ZI + ZI*ZR
  168. Z3R = STR*ZR - STI*ZI
  169. Z3I = STR*ZI + STI*ZR
  170. AZ3 = AZ*AA
  171. AK = 2.0D0 + FID
  172. BK = 3.0D0 - FID - FID
  173. CK = 4.0D0 - FID
  174. DK = 3.0D0 + FID + FID
  175. D1 = AK*DK
  176. D2 = BK*CK
  177. AD = DMIN1(D1,D2)
  178. AK = 24.0D0 + 9.0D0*FID
  179. BK = 30.0D0 - 9.0D0*FID
  180. DO 30 K=1,25
  181. STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
  182. TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
  183. TRM1R = STR
  184. S1R = S1R + TRM1R
  185. S1I = S1I + TRM1I
  186. STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
  187. TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
  188. TRM2R = STR
  189. S2R = S2R + TRM2R
  190. S2I = S2I + TRM2I
  191. ATRM = ATRM*AZ3/AD
  192. D1 = D1 + AK
  193. D2 = D2 + BK
  194. AD = DMIN1(D1,D2)
  195. IF (ATRM.LT.TOL*AD) GO TO 40
  196. AK = AK + 18.0D0
  197. BK = BK + 18.0D0
  198. 30 CONTINUE
  199. 40 CONTINUE
  200. IF (ID.EQ.1) GO TO 50
  201. AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
  202. AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
  203. IF (KODE.EQ.1) RETURN
  204. CALL ZSQRT(ZR, ZI, STR, STI)
  205. ZTAR = TTH*(ZR*STR-ZI*STI)
  206. ZTAI = TTH*(ZR*STI+ZI*STR)
  207. CALL ZEXP(ZTAR, ZTAI, STR, STI)
  208. PTR = AIR*STR - AII*STI
  209. AII = AIR*STI + AII*STR
  210. AIR = PTR
  211. RETURN
  212. 50 CONTINUE
  213. AIR = -S2R*C2
  214. AII = -S2I*C2
  215. IF (AZ.LE.TOL) GO TO 60
  216. STR = ZR*S1R - ZI*S1I
  217. STI = ZR*S1I + ZI*S1R
  218. CC = C1/(1.0D0+FID)
  219. AIR = AIR + CC*(STR*ZR-STI*ZI)
  220. AII = AII + CC*(STR*ZI+STI*ZR)
  221. 60 CONTINUE
  222. IF (KODE.EQ.1) RETURN
  223. CALL ZSQRT(ZR, ZI, STR, STI)
  224. ZTAR = TTH*(ZR*STR-ZI*STI)
  225. ZTAI = TTH*(ZR*STI+ZI*STR)
  226. CALL ZEXP(ZTAR, ZTAI, STR, STI)
  227. PTR = STR*AIR - STI*AII
  228. AII = STR*AII + STI*AIR
  229. AIR = PTR
  230. RETURN
  231. C-----------------------------------------------------------------------
  232. C CASE FOR CABS(Z).GT.1.0
  233. C-----------------------------------------------------------------------
  234. 70 CONTINUE
  235. FNU = (1.0D0+FID)/3.0D0
  236. C-----------------------------------------------------------------------
  237. C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
  238. C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
  239. C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
  240. C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
  241. C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
  242. C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
  243. C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
  244. C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
  245. C-----------------------------------------------------------------------
  246. K1 = I1MACH(15)
  247. K2 = I1MACH(16)
  248. R1M5 = D1MACH(5)
  249. K = MIN0(IABS(K1),IABS(K2))
  250. ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
  251. K1 = I1MACH(14) - 1
  252. AA = R1M5*DBLE(FLOAT(K1))
  253. DIG = DMIN1(AA,18.0D0)
  254. AA = AA*2.303D0
  255. ALIM = ELIM + DMAX1(-AA,-41.45D0)
  256. RL = 1.2D0*DIG + 3.0D0
  257. ALAZ = DLOG(AZ)
  258. C--------------------------------------------------------------------------
  259. C TEST FOR PROPER RANGE
  260. C-----------------------------------------------------------------------
  261. AA=0.5D0/TOL
  262. BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
  263. AA=DMIN1(AA,BB)
  264. AA=AA**TTH
  265. IF (AZ.GT.AA) GO TO 260
  266. AA=DSQRT(AA)
  267. IF (AZ.GT.AA) IERR=3
  268. CALL ZSQRT(ZR, ZI, CSQR, CSQI)
  269. ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
  270. ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
  271. C-----------------------------------------------------------------------
  272. C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
  273. C-----------------------------------------------------------------------
  274. IFLAG = 0
  275. SFAC = 1.0D0
  276. AK = ZTAI
  277. IF (ZR.GE.0.0D0) GO TO 80
  278. BK = ZTAR
  279. CK = -DABS(BK)
  280. ZTAR = CK
  281. ZTAI = AK
  282. 80 CONTINUE
  283. IF (ZI.NE.0.0D0) GO TO 90
  284. IF (ZR.GT.0.0D0) GO TO 90
  285. ZTAR = 0.0D0
  286. ZTAI = AK
  287. 90 CONTINUE
  288. AA = ZTAR
  289. IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
  290. IF (KODE.EQ.2) GO TO 100
  291. C-----------------------------------------------------------------------
  292. C OVERFLOW TEST
  293. C-----------------------------------------------------------------------
  294. IF (AA.GT.(-ALIM)) GO TO 100
  295. AA = -AA + 0.25D0*ALAZ
  296. IFLAG = 1
  297. SFAC = TOL
  298. IF (AA.GT.ELIM) GO TO 270
  299. 100 CONTINUE
  300. C-----------------------------------------------------------------------
  301. C CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
  302. C-----------------------------------------------------------------------
  303. MR = 1
  304. IF (ZI.LT.0.0D0) MR = -1
  305. CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
  306. * ELIM, ALIM)
  307. IF (NN.LT.0) GO TO 280
  308. NZ = NZ + NN
  309. GO TO 130
  310. 110 CONTINUE
  311. IF (KODE.EQ.2) GO TO 120
  312. C-----------------------------------------------------------------------
  313. C UNDERFLOW TEST
  314. C-----------------------------------------------------------------------
  315. IF (AA.LT.ALIM) GO TO 120
  316. AA = -AA - 0.25D0*ALAZ
  317. IFLAG = 2
  318. SFAC = 1.0D0/TOL
  319. IF (AA.LT.(-ELIM)) GO TO 210
  320. 120 CONTINUE
  321. CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
  322. * ALIM)
  323. 130 CONTINUE
  324. S1R = CYR(1)*COEF
  325. S1I = CYI(1)*COEF
  326. IF (IFLAG.NE.0) GO TO 150
  327. IF (ID.EQ.1) GO TO 140
  328. AIR = CSQR*S1R - CSQI*S1I
  329. AII = CSQR*S1I + CSQI*S1R
  330. RETURN
  331. 140 CONTINUE
  332. AIR = -(ZR*S1R-ZI*S1I)
  333. AII = -(ZR*S1I+ZI*S1R)
  334. RETURN
  335. 150 CONTINUE
  336. S1R = S1R*SFAC
  337. S1I = S1I*SFAC
  338. IF (ID.EQ.1) GO TO 160
  339. STR = S1R*CSQR - S1I*CSQI
  340. S1I = S1R*CSQI + S1I*CSQR
  341. S1R = STR
  342. AIR = S1R/SFAC
  343. AII = S1I/SFAC
  344. RETURN
  345. 160 CONTINUE
  346. STR = -(S1R*ZR-S1I*ZI)
  347. S1I = -(S1R*ZI+S1I*ZR)
  348. S1R = STR
  349. AIR = S1R/SFAC
  350. AII = S1I/SFAC
  351. RETURN
  352. 170 CONTINUE
  353. AA = 1.0D+3*D1MACH(1)
  354. S1R = ZEROR
  355. S1I = ZEROI
  356. IF (ID.EQ.1) GO TO 190
  357. IF (AZ.LE.AA) GO TO 180
  358. S1R = C2*ZR
  359. S1I = C2*ZI
  360. 180 CONTINUE
  361. AIR = C1 - S1R
  362. AII = -S1I
  363. RETURN
  364. 190 CONTINUE
  365. AIR = -C2
  366. AII = 0.0D0
  367. AA = DSQRT(AA)
  368. IF (AZ.LE.AA) GO TO 200
  369. S1R = 0.5D0*(ZR*ZR-ZI*ZI)
  370. S1I = ZR*ZI
  371. 200 CONTINUE
  372. AIR = AIR + C1*S1R
  373. AII = AII + C1*S1I
  374. RETURN
  375. 210 CONTINUE
  376. NZ = 1
  377. AIR = ZEROR
  378. AII = ZEROI
  379. RETURN
  380. 270 CONTINUE
  381. NZ = 0
  382. IERR=2
  383. RETURN
  384. 280 CONTINUE
  385. IF(NN.EQ.(-1)) GO TO 270
  386. NZ=0
  387. IERR=5
  388. RETURN
  389. 260 CONTINUE
  390. IERR=4
  391. NZ=0
  392. RETURN
  393. END