123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- SUBROUTINE ZAIRY(ZR, ZI, ID, KODE, AIR, AII, NZ, IERR)
- C***BEGIN PROLOGUE ZAIRY
- C***DATE WRITTEN 830501 (YYMMDD)
- C***REVISION DATE 890801 (YYMMDD)
- C***CATEGORY NO. B5K
- C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD
- C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
- C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z
- C***DESCRIPTION
- C
- C ***A DOUBLE PRECISION ROUTINE***
- C ON KODE=1, ZAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR
- C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON
- C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)*
- C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN
- C -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN
- C PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z).
- C
- C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN
- C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED
- C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS.
- C DEFINTIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF
- C MATHEMATICAL FUNCTIONS (REF. 1).
- C
- C INPUT ZR,ZI ARE DOUBLE PRECISION
- C ZR,ZI - Z=CMPLX(ZR,ZI)
- C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1
- C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
- C KODE= 1 RETURNS
- C AI=AI(Z) ON ID=0 OR
- C AI=DAI(Z)/DZ ON ID=1
- C = 2 RETURNS
- C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR
- C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE
- C ZTA=(2/3)*Z*CSQRT(Z)
- C
- C OUTPUT AIR,AII ARE DOUBLE PRECISION
- C AIR,AII- COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND
- C KODE
- C NZ - UNDERFLOW INDICATOR
- C NZ= 0 , NORMAL RETURN
- C NZ= 1 , AI=CMPLX(0.0D0,0.0D0) DUE TO UNDERFLOW IN
- C -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1
- C IERR - ERROR FLAG
- C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
- C IERR=1, INPUT ERROR - NO COMPUTATION
- C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA)
- C TOO LARGE ON KODE=1
- C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED
- C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION
- C PRODUCE LESS THAN HALF OF MACHINE ACCURACY
- C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION
- C COMPLETE LOSS OF ACCURACY BY ARGUMENT
- C REDUCTION
- C IERR=5, ERROR - NO COMPUTATION,
- C ALGORITHM TERMINATION CONDITION NOT MET
- C
- C***LONG DESCRIPTION
- C
- C AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL
- C FUNCTIONS BY
- C
- C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA)
- C C=1.0/(PI*SQRT(3.0))
- C ZTA=(2/3)*Z**(3/2)
- C
- C WITH THE POWER SERIES FOR CABS(Z).LE.1.0.
- C
- C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
- C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES
- C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF
- C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR),
- C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR
- C FLAG IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
- C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
- C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN
- C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT
- C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE
- C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA
- C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2,
- C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE
- C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE
- C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT-
- C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG-
- C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN
- C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN
- C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES,
- C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE
- C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER
- C MACHINES.
- C
- C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
- C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
- C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
- C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
- C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
- C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
- C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
- C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
- C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
- C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
- C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
- C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
- C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
- C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
- C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
- C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
- C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
- C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
- C OR -PI/2+P.
- C
- C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
- C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
- C COMMERCE, 1955.
- C
- C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
- C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
- C
- C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
- C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
- C 1018, MAY, 1985
- C
- C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
- C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
- C MATH. SOFTWARE, 1986
- C
- C***ROUTINES CALLED ZACAI,ZBKNU,ZEXP,ZSQRT,I1MACH,D1MACH
- C***END PROLOGUE ZAIRY
- C COMPLEX AI,CONE,CSQ,CY,S1,S2,TRM1,TRM2,Z,ZTA,Z3
- DOUBLE PRECISION AA, AD, AII, AIR, AK, ALIM, ATRM, AZ, AZ3, BK,
- * CC, CK, COEF, CONEI, CONER, CSQI, CSQR, CYI, CYR, C1, C2, DIG,
- * DK, D1, D2, ELIM, FID, FNU, PTR, RL, R1M5, SFAC, STI, STR,
- * S1I, S1R, S2I, S2R, TOL, TRM1I, TRM1R, TRM2I, TRM2R, TTH, ZEROI,
- * ZEROR, ZI, ZR, ZTAI, ZTAR, Z3I, Z3R, D1MACH, ZABS, ALAZ, BB
- INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
- DIMENSION CYR(1), CYI(1)
- DATA TTH, C1, C2, COEF /6.66666666666666667D-01,
- * 3.55028053887817240D-01,2.58819403792806799D-01,
- * 1.83776298473930683D-01/
- DATA ZEROR, ZEROI, CONER, CONEI /0.0D0,0.0D0,1.0D0,0.0D0/
- C***FIRST EXECUTABLE STATEMENT ZAIRY
- IERR = 0
- NZ=0
- IF (ID.LT.0 .OR. ID.GT.1) IERR=1
- IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
- IF (IERR.NE.0) RETURN
- AZ = ZABS(COMPLEX(ZR,ZI))
- TOL = DMAX1(D1MACH(4),1.0D-18)
- FID = DBLE(FLOAT(ID))
- IF (AZ.GT.1.0D0) GO TO 70
- C-----------------------------------------------------------------------
- C POWER SERIES FOR CABS(Z).LE.1.
- C-----------------------------------------------------------------------
- S1R = CONER
- S1I = CONEI
- S2R = CONER
- S2I = CONEI
- IF (AZ.LT.TOL) GO TO 170
- AA = AZ*AZ
- IF (AA.LT.TOL/AZ) GO TO 40
- TRM1R = CONER
- TRM1I = CONEI
- TRM2R = CONER
- TRM2I = CONEI
- ATRM = 1.0D0
- STR = ZR*ZR - ZI*ZI
- STI = ZR*ZI + ZI*ZR
- Z3R = STR*ZR - STI*ZI
- Z3I = STR*ZI + STI*ZR
- AZ3 = AZ*AA
- AK = 2.0D0 + FID
- BK = 3.0D0 - FID - FID
- CK = 4.0D0 - FID
- DK = 3.0D0 + FID + FID
- D1 = AK*DK
- D2 = BK*CK
- AD = DMIN1(D1,D2)
- AK = 24.0D0 + 9.0D0*FID
- BK = 30.0D0 - 9.0D0*FID
- DO 30 K=1,25
- STR = (TRM1R*Z3R-TRM1I*Z3I)/D1
- TRM1I = (TRM1R*Z3I+TRM1I*Z3R)/D1
- TRM1R = STR
- S1R = S1R + TRM1R
- S1I = S1I + TRM1I
- STR = (TRM2R*Z3R-TRM2I*Z3I)/D2
- TRM2I = (TRM2R*Z3I+TRM2I*Z3R)/D2
- TRM2R = STR
- S2R = S2R + TRM2R
- S2I = S2I + TRM2I
- ATRM = ATRM*AZ3/AD
- D1 = D1 + AK
- D2 = D2 + BK
- AD = DMIN1(D1,D2)
- IF (ATRM.LT.TOL*AD) GO TO 40
- AK = AK + 18.0D0
- BK = BK + 18.0D0
- 30 CONTINUE
- 40 CONTINUE
- IF (ID.EQ.1) GO TO 50
- AIR = S1R*C1 - C2*(ZR*S2R-ZI*S2I)
- AII = S1I*C1 - C2*(ZR*S2I+ZI*S2R)
- IF (KODE.EQ.1) RETURN
- CALL ZSQRT(ZR, ZI, STR, STI)
- ZTAR = TTH*(ZR*STR-ZI*STI)
- ZTAI = TTH*(ZR*STI+ZI*STR)
- CALL ZEXP(ZTAR, ZTAI, STR, STI)
- PTR = AIR*STR - AII*STI
- AII = AIR*STI + AII*STR
- AIR = PTR
- RETURN
- 50 CONTINUE
- AIR = -S2R*C2
- AII = -S2I*C2
- IF (AZ.LE.TOL) GO TO 60
- STR = ZR*S1R - ZI*S1I
- STI = ZR*S1I + ZI*S1R
- CC = C1/(1.0D0+FID)
- AIR = AIR + CC*(STR*ZR-STI*ZI)
- AII = AII + CC*(STR*ZI+STI*ZR)
- 60 CONTINUE
- IF (KODE.EQ.1) RETURN
- CALL ZSQRT(ZR, ZI, STR, STI)
- ZTAR = TTH*(ZR*STR-ZI*STI)
- ZTAI = TTH*(ZR*STI+ZI*STR)
- CALL ZEXP(ZTAR, ZTAI, STR, STI)
- PTR = STR*AIR - STI*AII
- AII = STR*AII + STI*AIR
- AIR = PTR
- RETURN
- C-----------------------------------------------------------------------
- C CASE FOR CABS(Z).GT.1.0
- C-----------------------------------------------------------------------
- 70 CONTINUE
- FNU = (1.0D0+FID)/3.0D0
- C-----------------------------------------------------------------------
- C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
- C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0D-18.
- C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
- C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
- C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
- C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
- C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
- C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
- C-----------------------------------------------------------------------
- K1 = I1MACH(15)
- K2 = I1MACH(16)
- R1M5 = D1MACH(5)
- K = MIN0(IABS(K1),IABS(K2))
- ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
- K1 = I1MACH(14) - 1
- AA = R1M5*DBLE(FLOAT(K1))
- DIG = DMIN1(AA,18.0D0)
- AA = AA*2.303D0
- ALIM = ELIM + DMAX1(-AA,-41.45D0)
- RL = 1.2D0*DIG + 3.0D0
- ALAZ = DLOG(AZ)
- C--------------------------------------------------------------------------
- C TEST FOR PROPER RANGE
- C-----------------------------------------------------------------------
- AA=0.5D0/TOL
- BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
- AA=DMIN1(AA,BB)
- AA=AA**TTH
- IF (AZ.GT.AA) GO TO 260
- AA=DSQRT(AA)
- IF (AZ.GT.AA) IERR=3
- CALL ZSQRT(ZR, ZI, CSQR, CSQI)
- ZTAR = TTH*(ZR*CSQR-ZI*CSQI)
- ZTAI = TTH*(ZR*CSQI+ZI*CSQR)
- C-----------------------------------------------------------------------
- C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
- C-----------------------------------------------------------------------
- IFLAG = 0
- SFAC = 1.0D0
- AK = ZTAI
- IF (ZR.GE.0.0D0) GO TO 80
- BK = ZTAR
- CK = -DABS(BK)
- ZTAR = CK
- ZTAI = AK
- 80 CONTINUE
- IF (ZI.NE.0.0D0) GO TO 90
- IF (ZR.GT.0.0D0) GO TO 90
- ZTAR = 0.0D0
- ZTAI = AK
- 90 CONTINUE
- AA = ZTAR
- IF (AA.GE.0.0D0 .AND. ZR.GT.0.0D0) GO TO 110
- IF (KODE.EQ.2) GO TO 100
- C-----------------------------------------------------------------------
- C OVERFLOW TEST
- C-----------------------------------------------------------------------
- IF (AA.GT.(-ALIM)) GO TO 100
- AA = -AA + 0.25D0*ALAZ
- IFLAG = 1
- SFAC = TOL
- IF (AA.GT.ELIM) GO TO 270
- 100 CONTINUE
- C-----------------------------------------------------------------------
- C CBKNU AND CACON RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
- C-----------------------------------------------------------------------
- MR = 1
- IF (ZI.LT.0.0D0) MR = -1
- CALL ZACAI(ZTAR, ZTAI, FNU, KODE, MR, 1, CYR, CYI, NN, RL, TOL,
- * ELIM, ALIM)
- IF (NN.LT.0) GO TO 280
- NZ = NZ + NN
- GO TO 130
- 110 CONTINUE
- IF (KODE.EQ.2) GO TO 120
- C-----------------------------------------------------------------------
- C UNDERFLOW TEST
- C-----------------------------------------------------------------------
- IF (AA.LT.ALIM) GO TO 120
- AA = -AA - 0.25D0*ALAZ
- IFLAG = 2
- SFAC = 1.0D0/TOL
- IF (AA.LT.(-ELIM)) GO TO 210
- 120 CONTINUE
- CALL ZBKNU(ZTAR, ZTAI, FNU, KODE, 1, CYR, CYI, NZ, TOL, ELIM,
- * ALIM)
- 130 CONTINUE
- S1R = CYR(1)*COEF
- S1I = CYI(1)*COEF
- IF (IFLAG.NE.0) GO TO 150
- IF (ID.EQ.1) GO TO 140
- AIR = CSQR*S1R - CSQI*S1I
- AII = CSQR*S1I + CSQI*S1R
- RETURN
- 140 CONTINUE
- AIR = -(ZR*S1R-ZI*S1I)
- AII = -(ZR*S1I+ZI*S1R)
- RETURN
- 150 CONTINUE
- S1R = S1R*SFAC
- S1I = S1I*SFAC
- IF (ID.EQ.1) GO TO 160
- STR = S1R*CSQR - S1I*CSQI
- S1I = S1R*CSQI + S1I*CSQR
- S1R = STR
- AIR = S1R/SFAC
- AII = S1I/SFAC
- RETURN
- 160 CONTINUE
- STR = -(S1R*ZR-S1I*ZI)
- S1I = -(S1R*ZI+S1I*ZR)
- S1R = STR
- AIR = S1R/SFAC
- AII = S1I/SFAC
- RETURN
- 170 CONTINUE
- AA = 1.0D+3*D1MACH(1)
- S1R = ZEROR
- S1I = ZEROI
- IF (ID.EQ.1) GO TO 190
- IF (AZ.LE.AA) GO TO 180
- S1R = C2*ZR
- S1I = C2*ZI
- 180 CONTINUE
- AIR = C1 - S1R
- AII = -S1I
- RETURN
- 190 CONTINUE
- AIR = -C2
- AII = 0.0D0
- AA = DSQRT(AA)
- IF (AZ.LE.AA) GO TO 200
- S1R = 0.5D0*(ZR*ZR-ZI*ZI)
- S1I = ZR*ZI
- 200 CONTINUE
- AIR = AIR + C1*S1R
- AII = AII + C1*S1I
- RETURN
- 210 CONTINUE
- NZ = 1
- AIR = ZEROR
- AII = ZEROI
- RETURN
- 270 CONTINUE
- NZ = 0
- IERR=2
- RETURN
- 280 CONTINUE
- IF(NN.EQ.(-1)) GO TO 270
- NZ=0
- IERR=5
- RETURN
- 260 CONTINUE
- IERR=4
- NZ=0
- RETURN
- END
|