123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- /* $OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* expm1l.c
- *
- * Exponential function, minus 1
- * 128-bit long double precision
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, expm1l();
- *
- * y = expm1l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power, minus one.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
- * in the basic range [-0.5 ln 2, 0.5 ln 2].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
- *
- */
- #include <errno.h>
- #include <openlibm_math.h>
- #include "math_private.h"
- /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
- -.5 ln 2 < x < .5 ln 2
- Theoretical peak relative error = 8.1e-36 */
- static const long double
- P0 = 2.943520915569954073888921213330863757240E8L,
- P1 = -5.722847283900608941516165725053359168840E7L,
- P2 = 8.944630806357575461578107295909719817253E6L,
- P3 = -7.212432713558031519943281748462837065308E5L,
- P4 = 4.578962475841642634225390068461943438441E4L,
- P5 = -1.716772506388927649032068540558788106762E3L,
- P6 = 4.401308817383362136048032038528753151144E1L,
- P7 = -4.888737542888633647784737721812546636240E-1L,
- Q0 = 1.766112549341972444333352727998584753865E9L,
- Q1 = -7.848989743695296475743081255027098295771E8L,
- Q2 = 1.615869009634292424463780387327037251069E8L,
- Q3 = -2.019684072836541751428967854947019415698E7L,
- Q4 = 1.682912729190313538934190635536631941751E6L,
- Q5 = -9.615511549171441430850103489315371768998E4L,
- Q6 = 3.697714952261803935521187272204485251835E3L,
- Q7 = -8.802340681794263968892934703309274564037E1L,
- /* Q8 = 1.000000000000000000000000000000000000000E0 */
- /* C1 + C2 = ln 2 */
- C1 = 6.93145751953125E-1L,
- C2 = 1.428606820309417232121458176568075500134E-6L,
- /* ln (2^16384 * (1 - 2^-113)) */
- maxlog = 1.1356523406294143949491931077970764891253E4L,
- /* ln 2^-114 */
- minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L;
- long double
- expm1l(long double x)
- {
- long double px, qx, xx;
- int32_t ix, sign;
- ieee_quad_shape_type u;
- int k;
- /* Detect infinity and NaN. */
- u.value = x;
- ix = u.parts32.mswhi;
- sign = ix & 0x80000000;
- ix &= 0x7fffffff;
- if (ix >= 0x7fff0000)
- {
- /* Infinity. */
- if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi |
- u.parts32.lswlo) == 0)
- {
- if (sign)
- return -1.0L;
- else
- return x;
- }
- /* NaN. No invalid exception. */
- return x;
- }
- /* expm1(+- 0) = +- 0. */
- if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
- return x;
- /* Overflow. */
- if (x > maxlog)
- return (big * big);
- /* Minimum value. */
- if (x < minarg)
- return (4.0/big - 1.0L);
- /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
- xx = C1 + C2; /* ln 2. */
- px = floorl (0.5 + x / xx);
- k = px;
- /* remainder times ln 2 */
- x -= px * C1;
- x -= px * C2;
- /* Approximate exp(remainder ln 2). */
- px = (((((((P7 * x
- + P6) * x
- + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
- qx = (((((((x
- + Q7) * x
- + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
- xx = x * x;
- qx = x + (0.5 * xx + xx * px / qx);
- /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
- We have qx = exp(remainder ln 2) - 1, so
- exp(x) - 1 = 2^k (qx + 1) - 1
- = 2^k qx + 2^k - 1. */
- px = ldexpl (1.0L, k);
- x = px * qx + (px - 1.0);
- return x;
- }
|