s_expm1l.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. /* $OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /* expm1l.c
  18. *
  19. * Exponential function, minus 1
  20. * 128-bit long double precision
  21. *
  22. *
  23. *
  24. * SYNOPSIS:
  25. *
  26. * long double x, y, expm1l();
  27. *
  28. * y = expm1l( x );
  29. *
  30. *
  31. *
  32. * DESCRIPTION:
  33. *
  34. * Returns e (2.71828...) raised to the x power, minus one.
  35. *
  36. * Range reduction is accomplished by separating the argument
  37. * into an integer k and fraction f such that
  38. *
  39. * x k f
  40. * e = 2 e.
  41. *
  42. * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
  43. * in the basic range [-0.5 ln 2, 0.5 ln 2].
  44. *
  45. *
  46. * ACCURACY:
  47. *
  48. * Relative error:
  49. * arithmetic domain # trials peak rms
  50. * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
  51. *
  52. */
  53. #include <errno.h>
  54. #include <openlibm_math.h>
  55. #include "math_private.h"
  56. /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
  57. -.5 ln 2 < x < .5 ln 2
  58. Theoretical peak relative error = 8.1e-36 */
  59. static const long double
  60. P0 = 2.943520915569954073888921213330863757240E8L,
  61. P1 = -5.722847283900608941516165725053359168840E7L,
  62. P2 = 8.944630806357575461578107295909719817253E6L,
  63. P3 = -7.212432713558031519943281748462837065308E5L,
  64. P4 = 4.578962475841642634225390068461943438441E4L,
  65. P5 = -1.716772506388927649032068540558788106762E3L,
  66. P6 = 4.401308817383362136048032038528753151144E1L,
  67. P7 = -4.888737542888633647784737721812546636240E-1L,
  68. Q0 = 1.766112549341972444333352727998584753865E9L,
  69. Q1 = -7.848989743695296475743081255027098295771E8L,
  70. Q2 = 1.615869009634292424463780387327037251069E8L,
  71. Q3 = -2.019684072836541751428967854947019415698E7L,
  72. Q4 = 1.682912729190313538934190635536631941751E6L,
  73. Q5 = -9.615511549171441430850103489315371768998E4L,
  74. Q6 = 3.697714952261803935521187272204485251835E3L,
  75. Q7 = -8.802340681794263968892934703309274564037E1L,
  76. /* Q8 = 1.000000000000000000000000000000000000000E0 */
  77. /* C1 + C2 = ln 2 */
  78. C1 = 6.93145751953125E-1L,
  79. C2 = 1.428606820309417232121458176568075500134E-6L,
  80. /* ln (2^16384 * (1 - 2^-113)) */
  81. maxlog = 1.1356523406294143949491931077970764891253E4L,
  82. /* ln 2^-114 */
  83. minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L;
  84. long double
  85. expm1l(long double x)
  86. {
  87. long double px, qx, xx;
  88. int32_t ix, sign;
  89. ieee_quad_shape_type u;
  90. int k;
  91. /* Detect infinity and NaN. */
  92. u.value = x;
  93. ix = u.parts32.mswhi;
  94. sign = ix & 0x80000000;
  95. ix &= 0x7fffffff;
  96. if (ix >= 0x7fff0000)
  97. {
  98. /* Infinity. */
  99. if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi |
  100. u.parts32.lswlo) == 0)
  101. {
  102. if (sign)
  103. return -1.0L;
  104. else
  105. return x;
  106. }
  107. /* NaN. No invalid exception. */
  108. return x;
  109. }
  110. /* expm1(+- 0) = +- 0. */
  111. if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
  112. return x;
  113. /* Overflow. */
  114. if (x > maxlog)
  115. return (big * big);
  116. /* Minimum value. */
  117. if (x < minarg)
  118. return (4.0/big - 1.0L);
  119. /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
  120. xx = C1 + C2; /* ln 2. */
  121. px = floorl (0.5 + x / xx);
  122. k = px;
  123. /* remainder times ln 2 */
  124. x -= px * C1;
  125. x -= px * C2;
  126. /* Approximate exp(remainder ln 2). */
  127. px = (((((((P7 * x
  128. + P6) * x
  129. + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
  130. qx = (((((((x
  131. + Q7) * x
  132. + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
  133. xx = x * x;
  134. qx = x + (0.5 * xx + xx * px / qx);
  135. /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
  136. We have qx = exp(remainder ln 2) - 1, so
  137. exp(x) - 1 = 2^k (qx + 1) - 1
  138. = 2^k qx + 2^k - 1. */
  139. px = ldexpl (1.0L, k);
  140. x = px * qx + (px - 1.0);
  141. return x;
  142. }