s_log1pl.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. /* $OpenBSD: s_log1pl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /* log1pl.c
  18. *
  19. * Relative error logarithm
  20. * Natural logarithm of 1+x, 128-bit long double precision
  21. *
  22. *
  23. *
  24. * SYNOPSIS:
  25. *
  26. * long double x, y, log1pl();
  27. *
  28. * y = log1pl( x );
  29. *
  30. *
  31. *
  32. * DESCRIPTION:
  33. *
  34. * Returns the base e (2.718...) logarithm of 1+x.
  35. *
  36. * The argument 1+x is separated into its exponent and fractional
  37. * parts. If the exponent is between -1 and +1, the logarithm
  38. * of the fraction is approximated by
  39. *
  40. * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
  41. *
  42. * Otherwise, setting z = 2(w-1)/(w+1),
  43. *
  44. * log(w) = z + z^3 P(z)/Q(z).
  45. *
  46. *
  47. *
  48. * ACCURACY:
  49. *
  50. * Relative error:
  51. * arithmetic domain # trials peak rms
  52. * IEEE -1, 8 100000 1.9e-34 4.3e-35
  53. */
  54. #include <openlibm_math.h>
  55. #include "math_private.h"
  56. /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
  57. * 1/sqrt(2) <= 1+x < sqrt(2)
  58. * Theoretical peak relative error = 5.3e-37,
  59. * relative peak error spread = 2.3e-14
  60. */
  61. static const long double
  62. P12 = 1.538612243596254322971797716843006400388E-6L,
  63. P11 = 4.998469661968096229986658302195402690910E-1L,
  64. P10 = 2.321125933898420063925789532045674660756E1L,
  65. P9 = 4.114517881637811823002128927449878962058E2L,
  66. P8 = 3.824952356185897735160588078446136783779E3L,
  67. P7 = 2.128857716871515081352991964243375186031E4L,
  68. P6 = 7.594356839258970405033155585486712125861E4L,
  69. P5 = 1.797628303815655343403735250238293741397E5L,
  70. P4 = 2.854829159639697837788887080758954924001E5L,
  71. P3 = 3.007007295140399532324943111654767187848E5L,
  72. P2 = 2.014652742082537582487669938141683759923E5L,
  73. P1 = 7.771154681358524243729929227226708890930E4L,
  74. P0 = 1.313572404063446165910279910527789794488E4L,
  75. /* Q12 = 1.000000000000000000000000000000000000000E0L, */
  76. Q11 = 4.839208193348159620282142911143429644326E1L,
  77. Q10 = 9.104928120962988414618126155557301584078E2L,
  78. Q9 = 9.147150349299596453976674231612674085381E3L,
  79. Q8 = 5.605842085972455027590989944010492125825E4L,
  80. Q7 = 2.248234257620569139969141618556349415120E5L,
  81. Q6 = 6.132189329546557743179177159925690841200E5L,
  82. Q5 = 1.158019977462989115839826904108208787040E6L,
  83. Q4 = 1.514882452993549494932585972882995548426E6L,
  84. Q3 = 1.347518538384329112529391120390701166528E6L,
  85. Q2 = 7.777690340007566932935753241556479363645E5L,
  86. Q1 = 2.626900195321832660448791748036714883242E5L,
  87. Q0 = 3.940717212190338497730839731583397586124E4L;
  88. /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
  89. * where z = 2(x-1)/(x+1)
  90. * 1/sqrt(2) <= x < sqrt(2)
  91. * Theoretical peak relative error = 1.1e-35,
  92. * relative peak error spread 1.1e-9
  93. */
  94. static const long double
  95. R5 = -8.828896441624934385266096344596648080902E-1L,
  96. R4 = 8.057002716646055371965756206836056074715E1L,
  97. R3 = -2.024301798136027039250415126250455056397E3L,
  98. R2 = 2.048819892795278657810231591630928516206E4L,
  99. R1 = -8.977257995689735303686582344659576526998E4L,
  100. R0 = 1.418134209872192732479751274970992665513E5L,
  101. /* S6 = 1.000000000000000000000000000000000000000E0L, */
  102. S5 = -1.186359407982897997337150403816839480438E2L,
  103. S4 = 3.998526750980007367835804959888064681098E3L,
  104. S3 = -5.748542087379434595104154610899551484314E4L,
  105. S2 = 4.001557694070773974936904547424676279307E5L,
  106. S1 = -1.332535117259762928288745111081235577029E6L,
  107. S0 = 1.701761051846631278975701529965589676574E6L;
  108. /* C1 + C2 = ln 2 */
  109. static const long double C1 = 6.93145751953125E-1L;
  110. static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
  111. static const long double sqrth = 0.7071067811865475244008443621048490392848L;
  112. /* ln (2^16384 * (1 - 2^-113)) */
  113. static const long double zero = 0.0L;
  114. long double
  115. log1pl(long double xm1)
  116. {
  117. long double x, y, z, r, s;
  118. ieee_quad_shape_type u;
  119. int32_t hx;
  120. int e;
  121. /* Test for NaN or infinity input. */
  122. u.value = xm1;
  123. hx = u.parts32.mswhi;
  124. if (hx >= 0x7fff0000)
  125. return xm1;
  126. /* log1p(+- 0) = +- 0. */
  127. if (((hx & 0x7fffffff) == 0)
  128. && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
  129. return xm1;
  130. x = xm1 + 1.0L;
  131. /* log1p(-1) = -inf */
  132. if (x <= 0.0L)
  133. {
  134. if (x == 0.0L)
  135. return (-1.0L / (x - x));
  136. else
  137. return (zero / (x - x));
  138. }
  139. /* Separate mantissa from exponent. */
  140. /* Use frexp used so that denormal numbers will be handled properly. */
  141. x = frexpl (x, &e);
  142. /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
  143. where z = 2(x-1)/x+1). */
  144. if ((e > 2) || (e < -2))
  145. {
  146. if (x < sqrth)
  147. { /* 2( 2x-1 )/( 2x+1 ) */
  148. e -= 1;
  149. z = x - 0.5L;
  150. y = 0.5L * z + 0.5L;
  151. }
  152. else
  153. { /* 2 (x-1)/(x+1) */
  154. z = x - 0.5L;
  155. z -= 0.5L;
  156. y = 0.5L * x + 0.5L;
  157. }
  158. x = z / y;
  159. z = x * x;
  160. r = ((((R5 * z
  161. + R4) * z
  162. + R3) * z
  163. + R2) * z
  164. + R1) * z
  165. + R0;
  166. s = (((((z
  167. + S5) * z
  168. + S4) * z
  169. + S3) * z
  170. + S2) * z
  171. + S1) * z
  172. + S0;
  173. z = x * (z * r / s);
  174. z = z + e * C2;
  175. z = z + x;
  176. z = z + e * C1;
  177. return (z);
  178. }
  179. /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
  180. if (x < sqrth)
  181. {
  182. e -= 1;
  183. if (e != 0)
  184. x = 2.0L * x - 1.0L; /* 2x - 1 */
  185. else
  186. x = xm1;
  187. }
  188. else
  189. {
  190. if (e != 0)
  191. x = x - 1.0L;
  192. else
  193. x = xm1;
  194. }
  195. z = x * x;
  196. r = (((((((((((P12 * x
  197. + P11) * x
  198. + P10) * x
  199. + P9) * x
  200. + P8) * x
  201. + P7) * x
  202. + P6) * x
  203. + P5) * x
  204. + P4) * x
  205. + P3) * x
  206. + P2) * x
  207. + P1) * x
  208. + P0;
  209. s = (((((((((((x
  210. + Q11) * x
  211. + Q10) * x
  212. + Q9) * x
  213. + Q8) * x
  214. + Q7) * x
  215. + Q6) * x
  216. + Q5) * x
  217. + Q4) * x
  218. + Q3) * x
  219. + Q2) * x
  220. + Q1) * x
  221. + Q0;
  222. y = x * (z * r / s);
  223. y = y + e * C2;
  224. z = y - 0.5L * z;
  225. z = z + x;
  226. z = z + e * C1;
  227. return (z);
  228. }