e_exp.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. /* @(#)e_exp.c 1.6 04/04/22 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. #include "cdefs-compat.h"
  12. //__FBSDID("$FreeBSD: src/lib/msun/src/e_exp.c,v 1.14 2011/10/21 06:26:38 das Exp $");
  13. /* __ieee754_exp(x)
  14. * Returns the exponential of x.
  15. *
  16. * Method
  17. * 1. Argument reduction:
  18. * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
  19. * Given x, find r and integer k such that
  20. *
  21. * x = k*ln2 + r, |r| <= 0.5*ln2.
  22. *
  23. * Here r will be represented as r = hi-lo for better
  24. * accuracy.
  25. *
  26. * 2. Approximation of exp(r) by a special rational function on
  27. * the interval [0,0.34658]:
  28. * Write
  29. * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
  30. * We use a special Remes algorithm on [0,0.34658] to generate
  31. * a polynomial of degree 5 to approximate R. The maximum error
  32. * of this polynomial approximation is bounded by 2**-59. In
  33. * other words,
  34. * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
  35. * (where z=r*r, and the values of P1 to P5 are listed below)
  36. * and
  37. * | 5 | -59
  38. * | 2.0+P1*z+...+P5*z - R(z) | <= 2
  39. * | |
  40. * The computation of exp(r) thus becomes
  41. * 2*r
  42. * exp(r) = 1 + -------
  43. * R - r
  44. * r*R1(r)
  45. * = 1 + r + ----------- (for better accuracy)
  46. * 2 - R1(r)
  47. * where
  48. * 2 4 10
  49. * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
  50. *
  51. * 3. Scale back to obtain exp(x):
  52. * From step 1, we have
  53. * exp(x) = 2^k * exp(r)
  54. *
  55. * Special cases:
  56. * exp(INF) is INF, exp(NaN) is NaN;
  57. * exp(-INF) is 0, and
  58. * for finite argument, only exp(0)=1 is exact.
  59. *
  60. * Accuracy:
  61. * according to an error analysis, the error is always less than
  62. * 1 ulp (unit in the last place).
  63. *
  64. * Misc. info.
  65. * For IEEE double
  66. * if x > 7.09782712893383973096e+02 then exp(x) overflow
  67. * if x < -7.45133219101941108420e+02 then exp(x) underflow
  68. *
  69. * Constants:
  70. * The hexadecimal values are the intended ones for the following
  71. * constants. The decimal values may be used, provided that the
  72. * compiler will convert from decimal to binary accurately enough
  73. * to produce the hexadecimal values shown.
  74. */
  75. #include <float.h>
  76. #include "openlibm.h"
  77. #include "math_private.h"
  78. static const double
  79. one = 1.0,
  80. halF[2] = {0.5,-0.5,},
  81. huge = 1.0e+300,
  82. o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
  83. u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
  84. ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
  85. -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
  86. ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
  87. -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
  88. invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
  89. P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  90. P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  91. P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  92. P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  93. P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
  94. static volatile double
  95. twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
  96. DLLEXPORT double
  97. __ieee754_exp(double x) /* default IEEE double exp */
  98. {
  99. double y,hi=0.0,lo=0.0,c,t,twopk;
  100. int32_t k=0,xsb;
  101. u_int32_t hx;
  102. GET_HIGH_WORD(hx,x);
  103. xsb = (hx>>31)&1; /* sign bit of x */
  104. hx &= 0x7fffffff; /* high word of |x| */
  105. /* filter out non-finite argument */
  106. if(hx >= 0x40862E42) { /* if |x|>=709.78... */
  107. if(hx>=0x7ff00000) {
  108. u_int32_t lx;
  109. GET_LOW_WORD(lx,x);
  110. if(((hx&0xfffff)|lx)!=0)
  111. return x+x; /* NaN */
  112. else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
  113. }
  114. if(x > o_threshold) return huge*huge; /* overflow */
  115. if(x < u_threshold) return twom1000*twom1000; /* underflow */
  116. }
  117. /* argument reduction */
  118. if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
  119. if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
  120. hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
  121. } else {
  122. k = (int)(invln2*x+halF[xsb]);
  123. t = k;
  124. hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
  125. lo = t*ln2LO[0];
  126. }
  127. STRICT_ASSIGN(double, x, hi - lo);
  128. }
  129. else if(hx < 0x3e300000) { /* when |x|<2**-28 */
  130. if(huge+x>one) return one+x;/* trigger inexact */
  131. }
  132. else k = 0;
  133. /* x is now in primary range */
  134. t = x*x;
  135. if(k >= -1021)
  136. INSERT_WORDS(twopk,0x3ff00000+(k<<20), 0);
  137. else
  138. INSERT_WORDS(twopk,0x3ff00000+((k+1000)<<20), 0);
  139. c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  140. if(k==0) return one-((x*c)/(c-2.0)-x);
  141. else y = one-((lo-(x*c)/(2.0-c))-hi);
  142. if(k >= -1021) {
  143. if (k==1024) return y*2.0*0x1p1023;
  144. return y*twopk;
  145. } else {
  146. return y*twopk*twom1000;
  147. }
  148. }