e_pow.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. /* @(#)e_pow.c 1.5 04/04/22 SMI */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
  5. *
  6. * Permission to use, copy, modify, and distribute this
  7. * software is freely granted, provided that this notice
  8. * is preserved.
  9. * ====================================================
  10. */
  11. #include "cdefs-compat.h"
  12. //__FBSDID("$FreeBSD: src/lib/msun/src/e_pow.c,v 1.14 2011/10/21 06:26:07 das Exp $");
  13. /* __ieee754_pow(x,y) return x**y
  14. *
  15. * n
  16. * Method: Let x = 2 * (1+f)
  17. * 1. Compute and return log2(x) in two pieces:
  18. * log2(x) = w1 + w2,
  19. * where w1 has 53-24 = 29 bit trailing zeros.
  20. * 2. Perform y*log2(x) = n+y' by simulating muti-precision
  21. * arithmetic, where |y'|<=0.5.
  22. * 3. Return x**y = 2**n*exp(y'*log2)
  23. *
  24. * Special cases:
  25. * 1. (anything) ** 0 is 1
  26. * 2. (anything) ** 1 is itself
  27. * 3. (anything) ** NAN is NAN
  28. * 4. NAN ** (anything except 0) is NAN
  29. * 5. +-(|x| > 1) ** +INF is +INF
  30. * 6. +-(|x| > 1) ** -INF is +0
  31. * 7. +-(|x| < 1) ** +INF is +0
  32. * 8. +-(|x| < 1) ** -INF is +INF
  33. * 9. +-1 ** +-INF is NAN
  34. * 10. +0 ** (+anything except 0, NAN) is +0
  35. * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
  36. * 12. +0 ** (-anything except 0, NAN) is +INF
  37. * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
  38. * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  39. * 15. +INF ** (+anything except 0,NAN) is +INF
  40. * 16. +INF ** (-anything except 0,NAN) is +0
  41. * 17. -INF ** (anything) = -0 ** (-anything)
  42. * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  43. * 19. (-anything except 0 and inf) ** (non-integer) is NAN
  44. *
  45. * Accuracy:
  46. * pow(x,y) returns x**y nearly rounded. In particular
  47. * pow(integer,integer)
  48. * always returns the correct integer provided it is
  49. * representable.
  50. *
  51. * Constants :
  52. * The hexadecimal values are the intended ones for the following
  53. * constants. The decimal values may be used, provided that the
  54. * compiler will convert from decimal to binary accurately enough
  55. * to produce the hexadecimal values shown.
  56. */
  57. #include "openlibm.h"
  58. #include "math_private.h"
  59. static const double
  60. bp[] = {1.0, 1.5,},
  61. dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  62. dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  63. zero = 0.0,
  64. one = 1.0,
  65. two = 2.0,
  66. two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
  67. huge = 1.0e300,
  68. tiny = 1.0e-300,
  69. /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  70. L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  71. L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  72. L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  73. L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  74. L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  75. L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  76. P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  77. P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  78. P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  79. P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  80. P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
  81. lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
  82. lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
  83. lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
  84. ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
  85. cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
  86. cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
  87. cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
  88. ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
  89. ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
  90. ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
  91. DLLEXPORT double
  92. __ieee754_pow(double x, double y)
  93. {
  94. double z,ax,z_h,z_l,p_h,p_l;
  95. double y1,t1,t2,r,s,t,u,v,w;
  96. int32_t i,j,k,yisint,n;
  97. int32_t hx,hy,ix,iy;
  98. u_int32_t lx,ly;
  99. EXTRACT_WORDS(hx,lx,x);
  100. EXTRACT_WORDS(hy,ly,y);
  101. ix = hx&0x7fffffff; iy = hy&0x7fffffff;
  102. /* y==zero: x**0 = 1 */
  103. if((iy|ly)==0) return one;
  104. /* x==1: 1**y = 1, even if y is NaN */
  105. if (hx==0x3ff00000 && lx == 0) return one;
  106. /* y!=zero: result is NaN if either arg is NaN */
  107. if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
  108. iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
  109. return (x+0.0)+(y+0.0);
  110. /* determine if y is an odd int when x < 0
  111. * yisint = 0 ... y is not an integer
  112. * yisint = 1 ... y is an odd int
  113. * yisint = 2 ... y is an even int
  114. */
  115. yisint = 0;
  116. if(hx<0) {
  117. if(iy>=0x43400000) yisint = 2; /* even integer y */
  118. else if(iy>=0x3ff00000) {
  119. k = (iy>>20)-0x3ff; /* exponent */
  120. if(k>20) {
  121. j = ly>>(52-k);
  122. if((j<<(52-k))==ly) yisint = 2-(j&1);
  123. } else if(ly==0) {
  124. j = iy>>(20-k);
  125. if((j<<(20-k))==iy) yisint = 2-(j&1);
  126. }
  127. }
  128. }
  129. /* special value of y */
  130. if(ly==0) {
  131. if (iy==0x7ff00000) { /* y is +-inf */
  132. if(((ix-0x3ff00000)|lx)==0)
  133. return one; /* (-1)**+-inf is NaN */
  134. else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
  135. return (hy>=0)? y: zero;
  136. else /* (|x|<1)**-,+inf = inf,0 */
  137. return (hy<0)?-y: zero;
  138. }
  139. if(iy==0x3ff00000) { /* y is +-1 */
  140. if(hy<0) return one/x; else return x;
  141. }
  142. if(hy==0x40000000) return x*x; /* y is 2 */
  143. if(hy==0x40080000) return x*x*x; /* y is 3 */
  144. if(hy==0x40100000) { /* y is 4 */
  145. u = x*x;
  146. return u*u;
  147. }
  148. if(hy==0x3fe00000) { /* y is 0.5 */
  149. if(hx>=0) /* x >= +0 */
  150. return sqrt(x);
  151. }
  152. }
  153. ax = fabs(x);
  154. /* special value of x */
  155. if(lx==0) {
  156. if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
  157. z = ax; /*x is +-0,+-inf,+-1*/
  158. if(hy<0) z = one/z; /* z = (1/|x|) */
  159. if(hx<0) {
  160. if(((ix-0x3ff00000)|yisint)==0) {
  161. z = (z-z)/(z-z); /* (-1)**non-int is NaN */
  162. } else if(yisint==1)
  163. z = -z; /* (x<0)**odd = -(|x|**odd) */
  164. }
  165. return z;
  166. }
  167. }
  168. /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
  169. n = (hx>>31)+1;
  170. but ANSI C says a right shift of a signed negative quantity is
  171. implementation defined. */
  172. n = ((u_int32_t)hx>>31)-1;
  173. /* (x<0)**(non-int) is NaN */
  174. if((n|yisint)==0) return (x-x)/(x-x);
  175. s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
  176. if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
  177. /* |y| is huge */
  178. if(iy>0x41e00000) { /* if |y| > 2**31 */
  179. if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
  180. if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
  181. if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
  182. }
  183. /* over/underflow if x is not close to one */
  184. if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
  185. if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
  186. /* now |1-x| is tiny <= 2**-20, suffice to compute
  187. log(x) by x-x^2/2+x^3/3-x^4/4 */
  188. t = ax-one; /* t has 20 trailing zeros */
  189. w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
  190. u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
  191. v = t*ivln2_l-w*ivln2;
  192. t1 = u+v;
  193. SET_LOW_WORD(t1,0);
  194. t2 = v-(t1-u);
  195. } else {
  196. double ss,s2,s_h,s_l,t_h,t_l;
  197. n = 0;
  198. /* take care subnormal number */
  199. if(ix<0x00100000)
  200. {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
  201. n += ((ix)>>20)-0x3ff;
  202. j = ix&0x000fffff;
  203. /* determine interval */
  204. ix = j|0x3ff00000; /* normalize ix */
  205. if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
  206. else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
  207. else {k=0;n+=1;ix -= 0x00100000;}
  208. SET_HIGH_WORD(ax,ix);
  209. /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
  210. u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
  211. v = one/(ax+bp[k]);
  212. ss = u*v;
  213. s_h = ss;
  214. SET_LOW_WORD(s_h,0);
  215. /* t_h=ax+bp[k] High */
  216. t_h = zero;
  217. SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
  218. t_l = ax - (t_h-bp[k]);
  219. s_l = v*((u-s_h*t_h)-s_h*t_l);
  220. /* compute log(ax) */
  221. s2 = ss*ss;
  222. r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
  223. r += s_l*(s_h+ss);
  224. s2 = s_h*s_h;
  225. t_h = 3.0+s2+r;
  226. SET_LOW_WORD(t_h,0);
  227. t_l = r-((t_h-3.0)-s2);
  228. /* u+v = ss*(1+...) */
  229. u = s_h*t_h;
  230. v = s_l*t_h+t_l*ss;
  231. /* 2/(3log2)*(ss+...) */
  232. p_h = u+v;
  233. SET_LOW_WORD(p_h,0);
  234. p_l = v-(p_h-u);
  235. z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
  236. z_l = cp_l*p_h+p_l*cp+dp_l[k];
  237. /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
  238. t = (double)n;
  239. t1 = (((z_h+z_l)+dp_h[k])+t);
  240. SET_LOW_WORD(t1,0);
  241. t2 = z_l-(((t1-t)-dp_h[k])-z_h);
  242. }
  243. /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  244. y1 = y;
  245. SET_LOW_WORD(y1,0);
  246. p_l = (y-y1)*t1+y*t2;
  247. p_h = y1*t1;
  248. z = p_l+p_h;
  249. EXTRACT_WORDS(j,i,z);
  250. if (j>=0x40900000) { /* z >= 1024 */
  251. if(((j-0x40900000)|i)!=0) /* if z > 1024 */
  252. return s*huge*huge; /* overflow */
  253. else {
  254. if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
  255. }
  256. } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
  257. if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
  258. return s*tiny*tiny; /* underflow */
  259. else {
  260. if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
  261. }
  262. }
  263. /*
  264. * compute 2**(p_h+p_l)
  265. */
  266. i = j&0x7fffffff;
  267. k = (i>>20)-0x3ff;
  268. n = 0;
  269. if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
  270. n = j+(0x00100000>>(k+1));
  271. k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
  272. t = zero;
  273. SET_HIGH_WORD(t,n&~(0x000fffff>>k));
  274. n = ((n&0x000fffff)|0x00100000)>>(20-k);
  275. if(j<0) n = -n;
  276. p_h -= t;
  277. }
  278. t = p_l+p_h;
  279. SET_LOW_WORD(t,0);
  280. u = t*lg2_h;
  281. v = (p_l-(t-p_h))*lg2+t*lg2_l;
  282. z = u+v;
  283. w = v-(z-u);
  284. t = z*z;
  285. t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  286. r = (z*t1)/(t1-two)-(w+z*w);
  287. z = one-(r-z);
  288. GET_HIGH_WORD(j,z);
  289. j += (n<<20);
  290. if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
  291. else SET_HIGH_WORD(z,j);
  292. return s*z;
  293. }