123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- /*
- * Copyright (c) 1985, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- /* @(#)exp.c 8.1 (Berkeley) 6/4/93 */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_exp.c,v 1.9 2011/10/16 05:37:20 das Exp $");
- #include <openlibm_math.h>
- /* EXP(X)
- * RETURN THE EXPONENTIAL OF X
- * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
- * CODED IN C BY K.C. NG, 1/19/85;
- * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
- *
- * Required system supported functions:
- * scalb(x,n)
- * copysign(x,y)
- * finite(x)
- *
- * Method:
- * 1. Argument Reduction: given the input x, find r and integer k such
- * that
- * x = k*ln2 + r, |r| <= 0.5*ln2 .
- * r will be represented as r := z+c for better accuracy.
- *
- * 2. Compute exp(r) by
- *
- * exp(r) = 1 + r + r*R1/(2-R1),
- * where
- * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
- *
- * 3. exp(x) = 2^k * exp(r) .
- *
- * Special cases:
- * exp(INF) is INF, exp(NaN) is NaN;
- * exp(-INF)= 0;
- * for finite argument, only exp(0)=1 is exact.
- *
- * Accuracy:
- * exp(x) returns the exponential of x nearly rounded. In a test run
- * with 1,156,000 random arguments on a VAX, the maximum observed
- * error was 0.869 ulps (units in the last place).
- */
- #include "mathimpl.h"
- static const double p1 = 0x1.555555555553ep-3;
- static const double p2 = -0x1.6c16c16bebd93p-9;
- static const double p3 = 0x1.1566aaf25de2cp-14;
- static const double p4 = -0x1.bbd41c5d26bf1p-20;
- static const double p5 = 0x1.6376972bea4d0p-25;
- static const double ln2hi = 0x1.62e42fee00000p-1;
- static const double ln2lo = 0x1.a39ef35793c76p-33;
- static const double lnhuge = 0x1.6602b15b7ecf2p9;
- static const double lntiny = -0x1.77af8ebeae354p9;
- static const double invln2 = 0x1.71547652b82fep0;
- #if 0
- OLM_DLLEXPORT double exp(x)
- double x;
- {
- double z,hi,lo,c;
- int k;
- #if !defined(vax)&&!defined(tahoe)
- if(x!=x) return(x); /* x is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
- if( x <= lnhuge ) {
- if( x >= lntiny ) {
- /* argument reduction : x --> x - k*ln2 */
- k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
- /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
- hi=x-k*ln2hi;
- x=hi-(lo=k*ln2lo);
- /* return 2^k*[1+x+x*c/(2+c)] */
- z=x*x;
- c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
- return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
- }
- /* end of x > lntiny */
- else
- /* exp(-big#) underflows to zero */
- if(finite(x)) return(scalb(1.0,-5000));
- /* exp(-INF) is zero */
- else return(0.0);
- }
- /* end of x < lnhuge */
- else
- /* exp(INF) is INF, exp(+big#) overflows to INF */
- return( finite(x) ? scalb(1.0,5000) : x);
- }
- #endif
- /* returns exp(r = x + c) for |c| < |x| with no overlap. */
- double __exp__D(x, c)
- double x, c;
- {
- double z,hi,lo;
- int k;
- if (x != x) /* x is NaN */
- return(x);
- if ( x <= lnhuge ) {
- if ( x >= lntiny ) {
- /* argument reduction : x --> x - k*ln2 */
- z = invln2*x;
- k = z + copysign(.5, x);
- /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
- hi=(x-k*ln2hi); /* Exact. */
- x= hi - (lo = k*ln2lo-c);
- /* return 2^k*[1+x+x*c/(2+c)] */
- z=x*x;
- c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
- c = (x*c)/(2.0-c);
- return scalbn(1.+(hi-(lo - c)), k);
- }
- /* end of x > lntiny */
- else
- /* exp(-big#) underflows to zero */
- if(isfinite(x)) return(scalbn(1.0,-5000));
- /* exp(-INF) is zero */
- else return(0.0);
- }
- /* end of x < lnhuge */
- else
- /* exp(INF) is INF, exp(+big#) overflows to INF */
- return( isfinite(x) ? scalbn(1.0,5000) : x);
- }
|