123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 |
- /*
- * Copyright (c) 1992, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- /* @(#)log.c 8.2 (Berkeley) 11/30/93 */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_log.c,v 1.9 2008/02/22 02:26:51 das Exp $");
- #include <openlibm_math.h>
- #include "mathimpl.h"
- /* Table-driven natural logarithm.
- *
- * This code was derived, with minor modifications, from:
- * Peter Tang, "Table-Driven Implementation of the
- * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
- * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
- *
- * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
- * where F = j/128 for j an integer in [0, 128].
- *
- * log(2^m) = log2_hi*m + log2_tail*m
- * since m is an integer, the dominant term is exact.
- * m has at most 10 digits (for subnormal numbers),
- * and log2_hi has 11 trailing zero bits.
- *
- * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
- * logF_hi[] + 512 is exact.
- *
- * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
- * the leading term is calculated to extra precision in two
- * parts, the larger of which adds exactly to the dominant
- * m and F terms.
- * There are two cases:
- * 1. when m, j are non-zero (m | j), use absolute
- * precision for the leading term.
- * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
- * In this case, use a relative precision of 24 bits.
- * (This is done differently in the original paper)
- *
- * Special cases:
- * 0 return signalling -Inf
- * neg return signalling NaN
- * +Inf return +Inf
- */
- #define N 128
- /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
- * Used for generation of extend precision logarithms.
- * The constant 35184372088832 is 2^45, so the divide is exact.
- * It ensures correct reading of logF_head, even for inaccurate
- * decimal-to-binary conversion routines. (Everybody gets the
- * right answer for integers less than 2^53.)
- * Values for log(F) were generated using error < 10^-57 absolute
- * with the bc -l package.
- */
- static double A1 = .08333333333333178827;
- static double A2 = .01250000000377174923;
- static double A3 = .002232139987919447809;
- static double A4 = .0004348877777076145742;
- static double logF_head[N+1] = {
- 0.,
- .007782140442060381246,
- .015504186535963526694,
- .023167059281547608406,
- .030771658666765233647,
- .038318864302141264488,
- .045809536031242714670,
- .053244514518837604555,
- .060624621816486978786,
- .067950661908525944454,
- .075223421237524235039,
- .082443669210988446138,
- .089612158689760690322,
- .096729626458454731618,
- .103796793681567578460,
- .110814366340264314203,
- .117783035656430001836,
- .124703478501032805070,
- .131576357788617315236,
- .138402322859292326029,
- .145182009844575077295,
- .151916042025732167530,
- .158605030176659056451,
- .165249572895390883786,
- .171850256926518341060,
- .178407657472689606947,
- .184922338493834104156,
- .191394852999565046047,
- .197825743329758552135,
- .204215541428766300668,
- .210564769107350002741,
- .216873938300523150246,
- .223143551314024080056,
- .229374101064877322642,
- .235566071312860003672,
- .241719936886966024758,
- .247836163904594286577,
- .253915209980732470285,
- .259957524436686071567,
- .265963548496984003577,
- .271933715484010463114,
- .277868451003087102435,
- .283768173130738432519,
- .289633292582948342896,
- .295464212893421063199,
- .301261330578199704177,
- .307025035294827830512,
- .312755710004239517729,
- .318453731118097493890,
- .324119468654316733591,
- .329753286372579168528,
- .335355541920762334484,
- .340926586970454081892,
- .346466767346100823488,
- .351976423156884266063,
- .357455888922231679316,
- .362905493689140712376,
- .368325561158599157352,
- .373716409793814818840,
- .379078352934811846353,
- .384411698910298582632,
- .389716751140440464951,
- .394993808240542421117,
- .400243164127459749579,
- .405465108107819105498,
- .410659924985338875558,
- .415827895143593195825,
- .420969294644237379543,
- .426084395310681429691,
- .431173464818130014464,
- .436236766774527495726,
- .441274560805140936281,
- .446287102628048160113,
- .451274644139630254358,
- .456237433481874177232,
- .461175715122408291790,
- .466089729924533457960,
- .470979715219073113985,
- .475845904869856894947,
- .480688529345570714212,
- .485507815781602403149,
- .490303988045525329653,
- .495077266798034543171,
- .499827869556611403822,
- .504556010751912253908,
- .509261901790523552335,
- .513945751101346104405,
- .518607764208354637958,
- .523248143765158602036,
- .527867089620485785417,
- .532464798869114019908,
- .537041465897345915436,
- .541597282432121573947,
- .546132437597407260909,
- .550647117952394182793,
- .555141507540611200965,
- .559615787935399566777,
- .564070138285387656651,
- .568504735352689749561,
- .572919753562018740922,
- .577315365035246941260,
- .581691739635061821900,
- .586049045003164792433,
- .590387446602107957005,
- .594707107746216934174,
- .599008189645246602594,
- .603290851438941899687,
- .607555250224322662688,
- .611801541106615331955,
- .616029877215623855590,
- .620240409751204424537,
- .624433288012369303032,
- .628608659422752680256,
- .632766669570628437213,
- .636907462236194987781,
- .641031179420679109171,
- .645137961373620782978,
- .649227946625615004450,
- .653301272011958644725,
- .657358072709030238911,
- .661398482245203922502,
- .665422632544505177065,
- .669430653942981734871,
- .673422675212350441142,
- .677398823590920073911,
- .681359224807238206267,
- .685304003098281100392,
- .689233281238557538017,
- .693147180560117703862
- };
- static double logF_tail[N+1] = {
- 0.,
- -.00000000000000543229938420049,
- .00000000000000172745674997061,
- -.00000000000001323017818229233,
- -.00000000000001154527628289872,
- -.00000000000000466529469958300,
- .00000000000005148849572685810,
- -.00000000000002532168943117445,
- -.00000000000005213620639136504,
- -.00000000000001819506003016881,
- .00000000000006329065958724544,
- .00000000000008614512936087814,
- -.00000000000007355770219435028,
- .00000000000009638067658552277,
- .00000000000007598636597194141,
- .00000000000002579999128306990,
- -.00000000000004654729747598444,
- -.00000000000007556920687451336,
- .00000000000010195735223708472,
- -.00000000000017319034406422306,
- -.00000000000007718001336828098,
- .00000000000010980754099855238,
- -.00000000000002047235780046195,
- -.00000000000008372091099235912,
- .00000000000014088127937111135,
- .00000000000012869017157588257,
- .00000000000017788850778198106,
- .00000000000006440856150696891,
- .00000000000016132822667240822,
- -.00000000000007540916511956188,
- -.00000000000000036507188831790,
- .00000000000009120937249914984,
- .00000000000018567570959796010,
- -.00000000000003149265065191483,
- -.00000000000009309459495196889,
- .00000000000017914338601329117,
- -.00000000000001302979717330866,
- .00000000000023097385217586939,
- .00000000000023999540484211737,
- .00000000000015393776174455408,
- -.00000000000036870428315837678,
- .00000000000036920375082080089,
- -.00000000000009383417223663699,
- .00000000000009433398189512690,
- .00000000000041481318704258568,
- -.00000000000003792316480209314,
- .00000000000008403156304792424,
- -.00000000000034262934348285429,
- .00000000000043712191957429145,
- -.00000000000010475750058776541,
- -.00000000000011118671389559323,
- .00000000000037549577257259853,
- .00000000000013912841212197565,
- .00000000000010775743037572640,
- .00000000000029391859187648000,
- -.00000000000042790509060060774,
- .00000000000022774076114039555,
- .00000000000010849569622967912,
- -.00000000000023073801945705758,
- .00000000000015761203773969435,
- .00000000000003345710269544082,
- -.00000000000041525158063436123,
- .00000000000032655698896907146,
- -.00000000000044704265010452446,
- .00000000000034527647952039772,
- -.00000000000007048962392109746,
- .00000000000011776978751369214,
- -.00000000000010774341461609578,
- .00000000000021863343293215910,
- .00000000000024132639491333131,
- .00000000000039057462209830700,
- -.00000000000026570679203560751,
- .00000000000037135141919592021,
- -.00000000000017166921336082431,
- -.00000000000028658285157914353,
- -.00000000000023812542263446809,
- .00000000000006576659768580062,
- -.00000000000028210143846181267,
- .00000000000010701931762114254,
- .00000000000018119346366441110,
- .00000000000009840465278232627,
- -.00000000000033149150282752542,
- -.00000000000018302857356041668,
- -.00000000000016207400156744949,
- .00000000000048303314949553201,
- -.00000000000071560553172382115,
- .00000000000088821239518571855,
- -.00000000000030900580513238244,
- -.00000000000061076551972851496,
- .00000000000035659969663347830,
- .00000000000035782396591276383,
- -.00000000000046226087001544578,
- .00000000000062279762917225156,
- .00000000000072838947272065741,
- .00000000000026809646615211673,
- -.00000000000010960825046059278,
- .00000000000002311949383800537,
- -.00000000000058469058005299247,
- -.00000000000002103748251144494,
- -.00000000000023323182945587408,
- -.00000000000042333694288141916,
- -.00000000000043933937969737844,
- .00000000000041341647073835565,
- .00000000000006841763641591466,
- .00000000000047585534004430641,
- .00000000000083679678674757695,
- -.00000000000085763734646658640,
- .00000000000021913281229340092,
- -.00000000000062242842536431148,
- -.00000000000010983594325438430,
- .00000000000065310431377633651,
- -.00000000000047580199021710769,
- -.00000000000037854251265457040,
- .00000000000040939233218678664,
- .00000000000087424383914858291,
- .00000000000025218188456842882,
- -.00000000000003608131360422557,
- -.00000000000050518555924280902,
- .00000000000078699403323355317,
- -.00000000000067020876961949060,
- .00000000000016108575753932458,
- .00000000000058527188436251509,
- -.00000000000035246757297904791,
- -.00000000000018372084495629058,
- .00000000000088606689813494916,
- .00000000000066486268071468700,
- .00000000000063831615170646519,
- .00000000000025144230728376072,
- -.00000000000017239444525614834
- };
- #if 0
- OLM_DLLEXPORT double
- #ifdef _ANSI_SOURCE
- log(double x)
- #else
- log(x) double x;
- #endif
- {
- int m, j;
- double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
- volatile double u1;
- /* Catch special cases */
- if (x <= 0)
- if (x == zero) /* log(0) = -Inf */
- return (-one/zero);
- else /* log(neg) = NaN */
- return (zero/zero);
- else if (!finite(x))
- return (x+x); /* x = NaN, Inf */
- /* Argument reduction: 1 <= g < 2; x/2^m = g; */
- /* y = F*(1 + f/F) for |f| <= 2^-8 */
- m = logb(x);
- g = ldexp(x, -m);
- if (m == -1022) {
- j = logb(g), m += j;
- g = ldexp(g, -j);
- }
- j = N*(g-1) + .5;
- F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
- f = g - F;
- /* Approximate expansion for log(1+f/F) ~= u + q */
- g = 1/(2*F+f);
- u = 2*f*g;
- v = u*u;
- q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
- /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
- * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
- * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
- */
- if (m | j)
- u1 = u + 513, u1 -= 513;
- /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
- * u1 = u to 24 bits.
- */
- else
- u1 = u, TRUNC(u1);
- u2 = (2.0*(f - F*u1) - u1*f) * g;
- /* u1 + u2 = 2f/(2F+f) to extra precision. */
- /* log(x) = log(2^m*F*(1+f/F)) = */
- /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
- /* (exact) + (tiny) */
- u1 += m*logF_head[N] + logF_head[j]; /* exact */
- u2 = (u2 + logF_tail[j]) + q; /* tiny */
- u2 += logF_tail[N]*m;
- return (u1 + u2);
- }
- #endif
- /*
- * Extra precision variant, returning struct {double a, b;};
- * log(x) = a+b to 63 bits, with a rounded to 26 bits.
- */
- struct Double
- #ifdef _ANSI_SOURCE
- __log__D(double x)
- #else
- __log__D(x) double x;
- #endif
- {
- int m, j;
- double F, f, g, q, u, v, u2;
- volatile double u1;
- struct Double r;
- /* Argument reduction: 1 <= g < 2; x/2^m = g; */
- /* y = F*(1 + f/F) for |f| <= 2^-8 */
- m = logb(x);
- g = ldexp(x, -m);
- if (m == -1022) {
- j = logb(g), m += j;
- g = ldexp(g, -j);
- }
- j = N*(g-1) + .5;
- F = (1.0/N) * j + 1;
- f = g - F;
- g = 1/(2*F+f);
- u = 2*f*g;
- v = u*u;
- q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
- if (m | j)
- u1 = u + 513, u1 -= 513;
- else
- u1 = u, TRUNC(u1);
- u2 = (2.0*(f - F*u1) - u1*f) * g;
- u1 += m*logF_head[N] + logF_head[j];
- u2 += logF_tail[j]; u2 += q;
- u2 += logF_tail[N]*m;
- r.a = u1 + u2; /* Only difference is here */
- TRUNC(r.a);
- r.b = (u1 - r.a) + u2;
- return (r);
- }
|