123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- /*-
- * Copyright (c) 1992, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
- /* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.10 2008/02/22 02:26:51 das Exp $");
- /*
- * This code by P. McIlroy, Oct 1992;
- *
- * The financial support of UUNET Communications Services is greatfully
- * acknowledged.
- */
- #include <openlibm_math.h>
- #include "mathimpl.h"
- /* METHOD:
- * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
- * At negative integers, return NaN and raise invalid.
- *
- * x < 6.5:
- * Use argument reduction G(x+1) = xG(x) to reach the
- * range [1.066124,2.066124]. Use a rational
- * approximation centered at the minimum (x0+1) to
- * ensure monotonicity.
- *
- * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
- * adjusted for equal-ripples:
- *
- * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
- *
- * Keep extra precision in multiplying (x-.5)(log(x)-1), to
- * avoid premature round-off.
- *
- * Special values:
- * -Inf: return NaN and raise invalid;
- * negative integer: return NaN and raise invalid;
- * other x ~< 177.79: return +-0 and raise underflow;
- * +-0: return +-Inf and raise divide-by-zero;
- * finite x ~> 171.63: return +Inf and raise overflow;
- * +Inf: return +Inf;
- * NaN: return NaN.
- *
- * Accuracy: tgamma(x) is accurate to within
- * x > 0: error provably < 0.9ulp.
- * Maximum observed in 1,000,000 trials was .87ulp.
- * x < 0:
- * Maximum observed error < 4ulp in 1,000,000 trials.
- */
- static double neg_gam(double);
- static double small_gam(double);
- static double smaller_gam(double);
- static struct Double large_gam(double);
- static struct Double ratfun_gam(double, double);
- /*
- * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
- * [1.066.., 2.066..] accurate to 4.25e-19.
- */
- #define LEFT -.3955078125 /* left boundary for rat. approx */
- #define x0 .461632144968362356785 /* xmin - 1 */
- #define a0_hi 0.88560319441088874992
- #define a0_lo -.00000000000000004996427036469019695
- #define P0 6.21389571821820863029017800727e-01
- #define P1 2.65757198651533466104979197553e-01
- #define P2 5.53859446429917461063308081748e-03
- #define P3 1.38456698304096573887145282811e-03
- #define P4 2.40659950032711365819348969808e-03
- #define Q0 1.45019531250000000000000000000e+00
- #define Q1 1.06258521948016171343454061571e+00
- #define Q2 -2.07474561943859936441469926649e-01
- #define Q3 -1.46734131782005422506287573015e-01
- #define Q4 3.07878176156175520361557573779e-02
- #define Q5 5.12449347980666221336054633184e-03
- #define Q6 -1.76012741431666995019222898833e-03
- #define Q7 9.35021023573788935372153030556e-05
- #define Q8 6.13275507472443958924745652239e-06
- /*
- * Constants for large x approximation (x in [6, Inf])
- * (Accurate to 2.8*10^-19 absolute)
- */
- #define lns2pi_hi 0.418945312500000
- #define lns2pi_lo -.000006779295327258219670263595
- #define Pa0 8.33333333333333148296162562474e-02
- #define Pa1 -2.77777777774548123579378966497e-03
- #define Pa2 7.93650778754435631476282786423e-04
- #define Pa3 -5.95235082566672847950717262222e-04
- #define Pa4 8.41428560346653702135821806252e-04
- #define Pa5 -1.89773526463879200348872089421e-03
- #define Pa6 5.69394463439411649408050664078e-03
- #define Pa7 -1.44705562421428915453880392761e-02
- static const double zero = 0., one = 1.0, tiny = 1e-300;
- OLM_DLLEXPORT double
- tgamma(x)
- double x;
- {
- struct Double u;
- if (isgreaterequal(x, 6)) {
- if(x > 171.63)
- return (x / zero);
- u = large_gam(x);
- return(__exp__D(u.a, u.b));
- } else if (isgreaterequal(x, 1.0 + LEFT + x0))
- return (small_gam(x));
- else if (isgreater(x, 1.e-17))
- return (smaller_gam(x));
- else if (isgreater(x, -1.e-17)) {
- if (x != 0.0)
- u.a = one - tiny; /* raise inexact */
- return (one/x);
- } else if (!isfinite(x))
- return (x - x); /* x is NaN or -Inf */
- else
- return (neg_gam(x));
- }
- /*
- * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
- */
- static struct Double
- large_gam(x)
- double x;
- {
- double z, p;
- struct Double t, u, v;
- z = one/(x*x);
- p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
- p = p/x;
- u = __log__D(x);
- u.a -= one;
- v.a = (x -= .5);
- TRUNC(v.a);
- v.b = x - v.a;
- t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
- t.b = v.b*u.a + x*u.b;
- /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
- t.b += lns2pi_lo; t.b += p;
- u.a = lns2pi_hi + t.b; u.a += t.a;
- u.b = t.a - u.a;
- u.b += lns2pi_hi; u.b += t.b;
- return (u);
- }
- /*
- * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
- * It also has correct monotonicity.
- */
- static double
- small_gam(x)
- double x;
- {
- double y, ym1, t;
- struct Double yy, r;
- y = x - one;
- ym1 = y - one;
- if (y <= 1.0 + (LEFT + x0)) {
- yy = ratfun_gam(y - x0, 0);
- return (yy.a + yy.b);
- }
- r.a = y;
- TRUNC(r.a);
- yy.a = r.a - one;
- y = ym1;
- yy.b = r.b = y - yy.a;
- /* Argument reduction: G(x+1) = x*G(x) */
- for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
- t = r.a*yy.a;
- r.b = r.a*yy.b + y*r.b;
- r.a = t;
- TRUNC(r.a);
- r.b += (t - r.a);
- }
- /* Return r*tgamma(y). */
- yy = ratfun_gam(y - x0, 0);
- y = r.b*(yy.a + yy.b) + r.a*yy.b;
- y += yy.a*r.a;
- return (y);
- }
- /*
- * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
- */
- static double
- smaller_gam(x)
- double x;
- {
- double t, d;
- struct Double r, xx;
- if (x < x0 + LEFT) {
- t = x, TRUNC(t);
- d = (t+x)*(x-t);
- t *= t;
- xx.a = (t + x), TRUNC(xx.a);
- xx.b = x - xx.a; xx.b += t; xx.b += d;
- t = (one-x0); t += x;
- d = (one-x0); d -= t; d += x;
- x = xx.a + xx.b;
- } else {
- xx.a = x, TRUNC(xx.a);
- xx.b = x - xx.a;
- t = x - x0;
- d = (-x0 -t); d += x;
- }
- r = ratfun_gam(t, d);
- d = r.a/x, TRUNC(d);
- r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
- return (d + r.a/x);
- }
- /*
- * returns (z+c)^2 * P(z)/Q(z) + a0
- */
- static struct Double
- ratfun_gam(z, c)
- double z, c;
- {
- double p, q;
- struct Double r, t;
- q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
- p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
- /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
- p = p/q;
- t.a = z, TRUNC(t.a); /* t ~= z + c */
- t.b = (z - t.a) + c;
- t.b *= (t.a + z);
- q = (t.a *= t.a); /* t = (z+c)^2 */
- TRUNC(t.a);
- t.b += (q - t.a);
- r.a = p, TRUNC(r.a); /* r = P/Q */
- r.b = p - r.a;
- t.b = t.b*p + t.a*r.b + a0_lo;
- t.a *= r.a; /* t = (z+c)^2*(P/Q) */
- r.a = t.a + a0_hi, TRUNC(r.a);
- r.b = ((a0_hi-r.a) + t.a) + t.b;
- return (r); /* r = a0 + t */
- }
- static double
- neg_gam(x)
- double x;
- {
- int sgn = 1;
- struct Double lg, lsine;
- double y, z;
- y = ceil(x);
- if (y == x) /* Negative integer. */
- return ((x - x) / zero);
- z = y - x;
- if (z > 0.5)
- z = one - z;
- y = 0.5 * y;
- if (y == ceil(y))
- sgn = -1;
- if (z < .25)
- z = sin(M_PI*z);
- else
- z = cos(M_PI*(0.5-z));
- /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
- if (x < -170) {
- if (x < -190)
- return ((double)sgn*tiny*tiny);
- y = one - x; /* exact: 128 < |x| < 255 */
- lg = large_gam(y);
- lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
- lg.a -= lsine.a; /* exact (opposite signs) */
- lg.b -= lsine.b;
- y = -(lg.a + lg.b);
- z = (y + lg.a) + lg.b;
- y = __exp__D(y, z);
- if (sgn < 0) y = -y;
- return (y);
- }
- y = one-x;
- if (one-y == x)
- y = tgamma(y);
- else /* 1-x is inexact */
- y = -x*tgamma(-x);
- if (sgn < 0) y = -y;
- return (M_PI / (y*z));
- }
|