e_lgammal_r.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. /* $OpenBSD: e_lgammal.c,v 1.3 2011/07/09 05:29:06 martynas Exp $ */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /* lgammal_r
  18. *
  19. * Natural logarithm of gamma function
  20. *
  21. *
  22. *
  23. * SYNOPSIS:
  24. *
  25. * long double x, y, lgammal_r();
  26. * int signgam;
  27. *
  28. * y = lgammal_r(x, &signgam);
  29. *
  30. *
  31. *
  32. * DESCRIPTION:
  33. *
  34. * Returns the base e (2.718...) logarithm of the absolute
  35. * value of the gamma function of the argument.
  36. * The sign (+1 or -1) of the gamma function is returned through signgamp.
  37. *
  38. * The positive domain is partitioned into numerous segments for approximation.
  39. * For x > 10,
  40. * log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2)
  41. * Near the minimum at x = x0 = 1.46... the approximation is
  42. * log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z)
  43. * for small z.
  44. * Elsewhere between 0 and 10,
  45. * log gamma(n + z) = log gamma(n) + z P(z)/Q(z)
  46. * for various selected n and small z.
  47. *
  48. * The cosecant reflection formula is employed for negative arguments.
  49. *
  50. *
  51. *
  52. * ACCURACY:
  53. *
  54. *
  55. * arithmetic domain # trials peak rms
  56. * Relative error:
  57. * IEEE 10, 30 100000 3.9e-34 9.8e-35
  58. * IEEE 0, 10 100000 3.8e-34 5.3e-35
  59. * Absolute error:
  60. * IEEE -10, 0 100000 8.0e-34 8.0e-35
  61. * IEEE -30, -10 100000 4.4e-34 1.0e-34
  62. * IEEE -100, 100 100000 1.0e-34
  63. *
  64. * The absolute error criterion is the same as relative error
  65. * when the function magnitude is greater than one but it is absolute
  66. * when the magnitude is less than one.
  67. *
  68. */
  69. #include <openlibm_math.h>
  70. #include "math_private.h"
  71. static const long double PIL = 3.1415926535897932384626433832795028841972E0L;
  72. static const long double MAXLGM = 1.0485738685148938358098967157129705071571E4928L;
  73. static const long double one = 1.0L;
  74. static const long double huge = 1.0e4000L;
  75. /* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2)
  76. 1/x <= 0.0741 (x >= 13.495...)
  77. Peak relative error 1.5e-36 */
  78. static const long double ls2pi = 9.1893853320467274178032973640561763986140E-1L;
  79. #define NRASY 12
  80. static const long double RASY[NRASY + 1] =
  81. {
  82. 8.333333333333333333333333333310437112111E-2L,
  83. -2.777777777777777777777774789556228296902E-3L,
  84. 7.936507936507936507795933938448586499183E-4L,
  85. -5.952380952380952041799269756378148574045E-4L,
  86. 8.417508417507928904209891117498524452523E-4L,
  87. -1.917526917481263997778542329739806086290E-3L,
  88. 6.410256381217852504446848671499409919280E-3L,
  89. -2.955064066900961649768101034477363301626E-2L,
  90. 1.796402955865634243663453415388336954675E-1L,
  91. -1.391522089007758553455753477688592767741E0L,
  92. 1.326130089598399157988112385013829305510E1L,
  93. -1.420412699593782497803472576479997819149E2L,
  94. 1.218058922427762808938869872528846787020E3L
  95. };
  96. /* log gamma(x+13) = log gamma(13) + x P(x)/Q(x)
  97. -0.5 <= x <= 0.5
  98. 12.5 <= x+13 <= 13.5
  99. Peak relative error 1.1e-36 */
  100. static const long double lgam13a = 1.9987213134765625E1L;
  101. static const long double lgam13b = 1.3608962611495173623870550785125024484248E-6L;
  102. #define NRN13 7
  103. static const long double RN13[NRN13 + 1] =
  104. {
  105. 8.591478354823578150238226576156275285700E11L,
  106. 2.347931159756482741018258864137297157668E11L,
  107. 2.555408396679352028680662433943000804616E10L,
  108. 1.408581709264464345480765758902967123937E9L,
  109. 4.126759849752613822953004114044451046321E7L,
  110. 6.133298899622688505854211579222889943778E5L,
  111. 3.929248056293651597987893340755876578072E3L,
  112. 6.850783280018706668924952057996075215223E0L
  113. };
  114. #define NRD13 6
  115. static const long double RD13[NRD13 + 1] =
  116. {
  117. 3.401225382297342302296607039352935541669E11L,
  118. 8.756765276918037910363513243563234551784E10L,
  119. 8.873913342866613213078554180987647243903E9L,
  120. 4.483797255342763263361893016049310017973E8L,
  121. 1.178186288833066430952276702931512870676E7L,
  122. 1.519928623743264797939103740132278337476E5L,
  123. 7.989298844938119228411117593338850892311E2L
  124. /* 1.0E0L */
  125. };
  126. /* log gamma(x+12) = log gamma(12) + x P(x)/Q(x)
  127. -0.5 <= x <= 0.5
  128. 11.5 <= x+12 <= 12.5
  129. Peak relative error 4.1e-36 */
  130. static const long double lgam12a = 1.75023040771484375E1L;
  131. static const long double lgam12b = 3.7687254483392876529072161996717039575982E-6L;
  132. #define NRN12 7
  133. static const long double RN12[NRN12 + 1] =
  134. {
  135. 4.709859662695606986110997348630997559137E11L,
  136. 1.398713878079497115037857470168777995230E11L,
  137. 1.654654931821564315970930093932954900867E10L,
  138. 9.916279414876676861193649489207282144036E8L,
  139. 3.159604070526036074112008954113411389879E7L,
  140. 5.109099197547205212294747623977502492861E5L,
  141. 3.563054878276102790183396740969279826988E3L,
  142. 6.769610657004672719224614163196946862747E0L
  143. };
  144. #define NRD12 6
  145. static const long double RD12[NRD12 + 1] =
  146. {
  147. 1.928167007860968063912467318985802726613E11L,
  148. 5.383198282277806237247492369072266389233E10L,
  149. 5.915693215338294477444809323037871058363E9L,
  150. 3.241438287570196713148310560147925781342E8L,
  151. 9.236680081763754597872713592701048455890E6L,
  152. 1.292246897881650919242713651166596478850E5L,
  153. 7.366532445427159272584194816076600211171E2L
  154. /* 1.0E0L */
  155. };
  156. /* log gamma(x+11) = log gamma(11) + x P(x)/Q(x)
  157. -0.5 <= x <= 0.5
  158. 10.5 <= x+11 <= 11.5
  159. Peak relative error 1.8e-35 */
  160. static const long double lgam11a = 1.5104400634765625E1L;
  161. static const long double lgam11b = 1.1938309890295225709329251070371882250744E-5L;
  162. #define NRN11 7
  163. static const long double RN11[NRN11 + 1] =
  164. {
  165. 2.446960438029415837384622675816736622795E11L,
  166. 7.955444974446413315803799763901729640350E10L,
  167. 1.030555327949159293591618473447420338444E10L,
  168. 6.765022131195302709153994345470493334946E8L,
  169. 2.361892792609204855279723576041468347494E7L,
  170. 4.186623629779479136428005806072176490125E5L,
  171. 3.202506022088912768601325534149383594049E3L,
  172. 6.681356101133728289358838690666225691363E0L
  173. };
  174. #define NRD11 6
  175. static const long double RD11[NRD11 + 1] =
  176. {
  177. 1.040483786179428590683912396379079477432E11L,
  178. 3.172251138489229497223696648369823779729E10L,
  179. 3.806961885984850433709295832245848084614E9L,
  180. 2.278070344022934913730015420611609620171E8L,
  181. 7.089478198662651683977290023829391596481E6L,
  182. 1.083246385105903533237139380509590158658E5L,
  183. 6.744420991491385145885727942219463243597E2L
  184. /* 1.0E0L */
  185. };
  186. /* log gamma(x+10) = log gamma(10) + x P(x)/Q(x)
  187. -0.5 <= x <= 0.5
  188. 9.5 <= x+10 <= 10.5
  189. Peak relative error 5.4e-37 */
  190. static const long double lgam10a = 1.280181884765625E1L;
  191. static const long double lgam10b = 8.6324252196112077178745667061642811492557E-6L;
  192. #define NRN10 7
  193. static const long double RN10[NRN10 + 1] =
  194. {
  195. -1.239059737177249934158597996648808363783E14L,
  196. -4.725899566371458992365624673357356908719E13L,
  197. -7.283906268647083312042059082837754850808E12L,
  198. -5.802855515464011422171165179767478794637E11L,
  199. -2.532349691157548788382820303182745897298E10L,
  200. -5.884260178023777312587193693477072061820E8L,
  201. -6.437774864512125749845840472131829114906E6L,
  202. -2.350975266781548931856017239843273049384E4L
  203. };
  204. #define NRD10 7
  205. static const long double RD10[NRD10 + 1] =
  206. {
  207. -5.502645997581822567468347817182347679552E13L,
  208. -1.970266640239849804162284805400136473801E13L,
  209. -2.819677689615038489384974042561531409392E12L,
  210. -2.056105863694742752589691183194061265094E11L,
  211. -8.053670086493258693186307810815819662078E9L,
  212. -1.632090155573373286153427982504851867131E8L,
  213. -1.483575879240631280658077826889223634921E6L,
  214. -4.002806669713232271615885826373550502510E3L
  215. /* 1.0E0L */
  216. };
  217. /* log gamma(x+9) = log gamma(9) + x P(x)/Q(x)
  218. -0.5 <= x <= 0.5
  219. 8.5 <= x+9 <= 9.5
  220. Peak relative error 3.6e-36 */
  221. static const long double lgam9a = 1.06045989990234375E1L;
  222. static const long double lgam9b = 3.9037218127284172274007216547549861681400E-6L;
  223. #define NRN9 7
  224. static const long double RN9[NRN9 + 1] =
  225. {
  226. -4.936332264202687973364500998984608306189E13L,
  227. -2.101372682623700967335206138517766274855E13L,
  228. -3.615893404644823888655732817505129444195E12L,
  229. -3.217104993800878891194322691860075472926E11L,
  230. -1.568465330337375725685439173603032921399E10L,
  231. -4.073317518162025744377629219101510217761E8L,
  232. -4.983232096406156139324846656819246974500E6L,
  233. -2.036280038903695980912289722995505277253E4L
  234. };
  235. #define NRD9 7
  236. static const long double RD9[NRD9 + 1] =
  237. {
  238. -2.306006080437656357167128541231915480393E13L,
  239. -9.183606842453274924895648863832233799950E12L,
  240. -1.461857965935942962087907301194381010380E12L,
  241. -1.185728254682789754150068652663124298303E11L,
  242. -5.166285094703468567389566085480783070037E9L,
  243. -1.164573656694603024184768200787835094317E8L,
  244. -1.177343939483908678474886454113163527909E6L,
  245. -3.529391059783109732159524500029157638736E3L
  246. /* 1.0E0L */
  247. };
  248. /* log gamma(x+8) = log gamma(8) + x P(x)/Q(x)
  249. -0.5 <= x <= 0.5
  250. 7.5 <= x+8 <= 8.5
  251. Peak relative error 2.4e-37 */
  252. static const long double lgam8a = 8.525146484375E0L;
  253. static const long double lgam8b = 1.4876690414300165531036347125050759667737E-5L;
  254. #define NRN8 8
  255. static const long double RN8[NRN8 + 1] =
  256. {
  257. 6.600775438203423546565361176829139703289E11L,
  258. 3.406361267593790705240802723914281025800E11L,
  259. 7.222460928505293914746983300555538432830E10L,
  260. 8.102984106025088123058747466840656458342E9L,
  261. 5.157620015986282905232150979772409345927E8L,
  262. 1.851445288272645829028129389609068641517E7L,
  263. 3.489261702223124354745894067468953756656E5L,
  264. 2.892095396706665774434217489775617756014E3L,
  265. 6.596977510622195827183948478627058738034E0L
  266. };
  267. #define NRD8 7
  268. static const long double RD8[NRD8 + 1] =
  269. {
  270. 3.274776546520735414638114828622673016920E11L,
  271. 1.581811207929065544043963828487733970107E11L,
  272. 3.108725655667825188135393076860104546416E10L,
  273. 3.193055010502912617128480163681842165730E9L,
  274. 1.830871482669835106357529710116211541839E8L,
  275. 5.790862854275238129848491555068073485086E6L,
  276. 9.305213264307921522842678835618803553589E4L,
  277. 6.216974105861848386918949336819572333622E2L
  278. /* 1.0E0L */
  279. };
  280. /* log gamma(x+7) = log gamma(7) + x P(x)/Q(x)
  281. -0.5 <= x <= 0.5
  282. 6.5 <= x+7 <= 7.5
  283. Peak relative error 3.2e-36 */
  284. static const long double lgam7a = 6.5792388916015625E0L;
  285. static const long double lgam7b = 1.2320408538495060178292903945321122583007E-5L;
  286. #define NRN7 8
  287. static const long double RN7[NRN7 + 1] =
  288. {
  289. 2.065019306969459407636744543358209942213E11L,
  290. 1.226919919023736909889724951708796532847E11L,
  291. 2.996157990374348596472241776917953749106E10L,
  292. 3.873001919306801037344727168434909521030E9L,
  293. 2.841575255593761593270885753992732145094E8L,
  294. 1.176342515359431913664715324652399565551E7L,
  295. 2.558097039684188723597519300356028511547E5L,
  296. 2.448525238332609439023786244782810774702E3L,
  297. 6.460280377802030953041566617300902020435E0L
  298. };
  299. #define NRD7 7
  300. static const long double RD7[NRD7 + 1] =
  301. {
  302. 1.102646614598516998880874785339049304483E11L,
  303. 6.099297512712715445879759589407189290040E10L,
  304. 1.372898136289611312713283201112060238351E10L,
  305. 1.615306270420293159907951633566635172343E9L,
  306. 1.061114435798489135996614242842561967459E8L,
  307. 3.845638971184305248268608902030718674691E6L,
  308. 7.081730675423444975703917836972720495507E4L,
  309. 5.423122582741398226693137276201344096370E2L
  310. /* 1.0E0L */
  311. };
  312. /* log gamma(x+6) = log gamma(6) + x P(x)/Q(x)
  313. -0.5 <= x <= 0.5
  314. 5.5 <= x+6 <= 6.5
  315. Peak relative error 6.2e-37 */
  316. static const long double lgam6a = 4.7874908447265625E0L;
  317. static const long double lgam6b = 8.9805548349424770093452324304839959231517E-7L;
  318. #define NRN6 8
  319. static const long double RN6[NRN6 + 1] =
  320. {
  321. -3.538412754670746879119162116819571823643E13L,
  322. -2.613432593406849155765698121483394257148E13L,
  323. -8.020670732770461579558867891923784753062E12L,
  324. -1.322227822931250045347591780332435433420E12L,
  325. -1.262809382777272476572558806855377129513E11L,
  326. -7.015006277027660872284922325741197022467E9L,
  327. -2.149320689089020841076532186783055727299E8L,
  328. -3.167210585700002703820077565539658995316E6L,
  329. -1.576834867378554185210279285358586385266E4L
  330. };
  331. #define NRD6 8
  332. static const long double RD6[NRD6 + 1] =
  333. {
  334. -2.073955870771283609792355579558899389085E13L,
  335. -1.421592856111673959642750863283919318175E13L,
  336. -4.012134994918353924219048850264207074949E12L,
  337. -6.013361045800992316498238470888523722431E11L,
  338. -5.145382510136622274784240527039643430628E10L,
  339. -2.510575820013409711678540476918249524123E9L,
  340. -6.564058379709759600836745035871373240904E7L,
  341. -7.861511116647120540275354855221373571536E5L,
  342. -2.821943442729620524365661338459579270561E3L
  343. /* 1.0E0L */
  344. };
  345. /* log gamma(x+5) = log gamma(5) + x P(x)/Q(x)
  346. -0.5 <= x <= 0.5
  347. 4.5 <= x+5 <= 5.5
  348. Peak relative error 3.4e-37 */
  349. static const long double lgam5a = 3.17803955078125E0L;
  350. static const long double lgam5b = 1.4279566695619646941601297055408873990961E-5L;
  351. #define NRN5 9
  352. static const long double RN5[NRN5 + 1] =
  353. {
  354. 2.010952885441805899580403215533972172098E11L,
  355. 1.916132681242540921354921906708215338584E11L,
  356. 7.679102403710581712903937970163206882492E10L,
  357. 1.680514903671382470108010973615268125169E10L,
  358. 2.181011222911537259440775283277711588410E9L,
  359. 1.705361119398837808244780667539728356096E8L,
  360. 7.792391565652481864976147945997033946360E6L,
  361. 1.910741381027985291688667214472560023819E5L,
  362. 2.088138241893612679762260077783794329559E3L,
  363. 6.330318119566998299106803922739066556550E0L
  364. };
  365. #define NRD5 8
  366. static const long double RD5[NRD5 + 1] =
  367. {
  368. 1.335189758138651840605141370223112376176E11L,
  369. 1.174130445739492885895466097516530211283E11L,
  370. 4.308006619274572338118732154886328519910E10L,
  371. 8.547402888692578655814445003283720677468E9L,
  372. 9.934628078575618309542580800421370730906E8L,
  373. 6.847107420092173812998096295422311820672E7L,
  374. 2.698552646016599923609773122139463150403E6L,
  375. 5.526516251532464176412113632726150253215E4L,
  376. 4.772343321713697385780533022595450486932E2L
  377. /* 1.0E0L */
  378. };
  379. /* log gamma(x+4) = log gamma(4) + x P(x)/Q(x)
  380. -0.5 <= x <= 0.5
  381. 3.5 <= x+4 <= 4.5
  382. Peak relative error 6.7e-37 */
  383. static const long double lgam4a = 1.791748046875E0L;
  384. static const long double lgam4b = 1.1422353055000812477358380702272722990692E-5L;
  385. #define NRN4 9
  386. static const long double RN4[NRN4 + 1] =
  387. {
  388. -1.026583408246155508572442242188887829208E13L,
  389. -1.306476685384622809290193031208776258809E13L,
  390. -7.051088602207062164232806511992978915508E12L,
  391. -2.100849457735620004967624442027793656108E12L,
  392. -3.767473790774546963588549871673843260569E11L,
  393. -4.156387497364909963498394522336575984206E10L,
  394. -2.764021460668011732047778992419118757746E9L,
  395. -1.036617204107109779944986471142938641399E8L,
  396. -1.895730886640349026257780896972598305443E6L,
  397. -1.180509051468390914200720003907727988201E4L
  398. };
  399. #define NRD4 9
  400. static const long double RD4[NRD4 + 1] =
  401. {
  402. -8.172669122056002077809119378047536240889E12L,
  403. -9.477592426087986751343695251801814226960E12L,
  404. -4.629448850139318158743900253637212801682E12L,
  405. -1.237965465892012573255370078308035272942E12L,
  406. -1.971624313506929845158062177061297598956E11L,
  407. -1.905434843346570533229942397763361493610E10L,
  408. -1.089409357680461419743730978512856675984E9L,
  409. -3.416703082301143192939774401370222822430E7L,
  410. -4.981791914177103793218433195857635265295E5L,
  411. -2.192507743896742751483055798411231453733E3L
  412. /* 1.0E0L */
  413. };
  414. /* log gamma(x+3) = log gamma(3) + x P(x)/Q(x)
  415. -0.25 <= x <= 0.5
  416. 2.75 <= x+3 <= 3.5
  417. Peak relative error 6.0e-37 */
  418. static const long double lgam3a = 6.93145751953125E-1L;
  419. static const long double lgam3b = 1.4286068203094172321214581765680755001344E-6L;
  420. #define NRN3 9
  421. static const long double RN3[NRN3 + 1] =
  422. {
  423. -4.813901815114776281494823863935820876670E11L,
  424. -8.425592975288250400493910291066881992620E11L,
  425. -6.228685507402467503655405482985516909157E11L,
  426. -2.531972054436786351403749276956707260499E11L,
  427. -6.170200796658926701311867484296426831687E10L,
  428. -9.211477458528156048231908798456365081135E9L,
  429. -8.251806236175037114064561038908691305583E8L,
  430. -4.147886355917831049939930101151160447495E7L,
  431. -1.010851868928346082547075956946476932162E6L,
  432. -8.333374463411801009783402800801201603736E3L
  433. };
  434. #define NRD3 9
  435. static const long double RD3[NRD3 + 1] =
  436. {
  437. -5.216713843111675050627304523368029262450E11L,
  438. -8.014292925418308759369583419234079164391E11L,
  439. -5.180106858220030014546267824392678611990E11L,
  440. -1.830406975497439003897734969120997840011E11L,
  441. -3.845274631904879621945745960119924118925E10L,
  442. -4.891033385370523863288908070309417710903E9L,
  443. -3.670172254411328640353855768698287474282E8L,
  444. -1.505316381525727713026364396635522516989E7L,
  445. -2.856327162923716881454613540575964890347E5L,
  446. -1.622140448015769906847567212766206894547E3L
  447. /* 1.0E0L */
  448. };
  449. /* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x)
  450. -0.125 <= x <= 0.25
  451. 2.375 <= x+2.5 <= 2.75 */
  452. static const long double lgam2r5a = 2.8466796875E-1L;
  453. static const long double lgam2r5b = 1.4901722919159632494669682701924320137696E-5L;
  454. #define NRN2r5 8
  455. static const long double RN2r5[NRN2r5 + 1] =
  456. {
  457. -4.676454313888335499356699817678862233205E9L,
  458. -9.361888347911187924389905984624216340639E9L,
  459. -7.695353600835685037920815799526540237703E9L,
  460. -3.364370100981509060441853085968900734521E9L,
  461. -8.449902011848163568670361316804900559863E8L,
  462. -1.225249050950801905108001246436783022179E8L,
  463. -9.732972931077110161639900388121650470926E6L,
  464. -3.695711763932153505623248207576425983573E5L,
  465. -4.717341584067827676530426007495274711306E3L
  466. };
  467. #define NRD2r5 8
  468. static const long double RD2r5[NRD2r5 + 1] =
  469. {
  470. -6.650657966618993679456019224416926875619E9L,
  471. -1.099511409330635807899718829033488771623E10L,
  472. -7.482546968307837168164311101447116903148E9L,
  473. -2.702967190056506495988922973755870557217E9L,
  474. -5.570008176482922704972943389590409280950E8L,
  475. -6.536934032192792470926310043166993233231E7L,
  476. -4.101991193844953082400035444146067511725E6L,
  477. -1.174082735875715802334430481065526664020E5L,
  478. -9.932840389994157592102947657277692978511E2L
  479. /* 1.0E0L */
  480. };
  481. /* log gamma(x+2) = x P(x)/Q(x)
  482. -0.125 <= x <= +0.375
  483. 1.875 <= x+2 <= 2.375
  484. Peak relative error 4.6e-36 */
  485. #define NRN2 9
  486. static const long double RN2[NRN2 + 1] =
  487. {
  488. -3.716661929737318153526921358113793421524E9L,
  489. -1.138816715030710406922819131397532331321E10L,
  490. -1.421017419363526524544402598734013569950E10L,
  491. -9.510432842542519665483662502132010331451E9L,
  492. -3.747528562099410197957514973274474767329E9L,
  493. -8.923565763363912474488712255317033616626E8L,
  494. -1.261396653700237624185350402781338231697E8L,
  495. -9.918402520255661797735331317081425749014E6L,
  496. -3.753996255897143855113273724233104768831E5L,
  497. -4.778761333044147141559311805999540765612E3L
  498. };
  499. #define NRD2 9
  500. static const long double RD2[NRD2 + 1] =
  501. {
  502. -8.790916836764308497770359421351673950111E9L,
  503. -2.023108608053212516399197678553737477486E10L,
  504. -1.958067901852022239294231785363504458367E10L,
  505. -1.035515043621003101254252481625188704529E10L,
  506. -3.253884432621336737640841276619272224476E9L,
  507. -6.186383531162456814954947669274235815544E8L,
  508. -6.932557847749518463038934953605969951466E7L,
  509. -4.240731768287359608773351626528479703758E6L,
  510. -1.197343995089189188078944689846348116630E5L,
  511. -1.004622911670588064824904487064114090920E3L
  512. /* 1.0E0 */
  513. };
  514. /* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x)
  515. -0.125 <= x <= +0.125
  516. 1.625 <= x+1.75 <= 1.875
  517. Peak relative error 9.2e-37 */
  518. static const long double lgam1r75a = -8.441162109375E-2L;
  519. static const long double lgam1r75b = 1.0500073264444042213965868602268256157604E-5L;
  520. #define NRN1r75 8
  521. static const long double RN1r75[NRN1r75 + 1] =
  522. {
  523. -5.221061693929833937710891646275798251513E7L,
  524. -2.052466337474314812817883030472496436993E8L,
  525. -2.952718275974940270675670705084125640069E8L,
  526. -2.132294039648116684922965964126389017840E8L,
  527. -8.554103077186505960591321962207519908489E7L,
  528. -1.940250901348870867323943119132071960050E7L,
  529. -2.379394147112756860769336400290402208435E6L,
  530. -1.384060879999526222029386539622255797389E5L,
  531. -2.698453601378319296159355612094598695530E3L
  532. };
  533. #define NRD1r75 8
  534. static const long double RD1r75[NRD1r75 + 1] =
  535. {
  536. -2.109754689501705828789976311354395393605E8L,
  537. -5.036651829232895725959911504899241062286E8L,
  538. -4.954234699418689764943486770327295098084E8L,
  539. -2.589558042412676610775157783898195339410E8L,
  540. -7.731476117252958268044969614034776883031E7L,
  541. -1.316721702252481296030801191240867486965E7L,
  542. -1.201296501404876774861190604303728810836E6L,
  543. -5.007966406976106636109459072523610273928E4L,
  544. -6.155817990560743422008969155276229018209E2L
  545. /* 1.0E0L */
  546. };
  547. /* log gamma(x+x0) = y0 + x^2 P(x)/Q(x)
  548. -0.0867 <= x <= +0.1634
  549. 1.374932... <= x+x0 <= 1.625032...
  550. Peak relative error 4.0e-36 */
  551. static const long double x0a = 1.4616241455078125L;
  552. static const long double x0b = 7.9994605498412626595423257213002588621246E-6L;
  553. static const long double y0a = -1.21490478515625E-1L;
  554. static const long double y0b = 4.1879797753919044854428223084178486438269E-6L;
  555. #define NRN1r5 8
  556. static const long double RN1r5[NRN1r5 + 1] =
  557. {
  558. 6.827103657233705798067415468881313128066E5L,
  559. 1.910041815932269464714909706705242148108E6L,
  560. 2.194344176925978377083808566251427771951E6L,
  561. 1.332921400100891472195055269688876427962E6L,
  562. 4.589080973377307211815655093824787123508E5L,
  563. 8.900334161263456942727083580232613796141E4L,
  564. 9.053840838306019753209127312097612455236E3L,
  565. 4.053367147553353374151852319743594873771E2L,
  566. 5.040631576303952022968949605613514584950E0L
  567. };
  568. #define NRD1r5 8
  569. static const long double RD1r5[NRD1r5 + 1] =
  570. {
  571. 1.411036368843183477558773688484699813355E6L,
  572. 4.378121767236251950226362443134306184849E6L,
  573. 5.682322855631723455425929877581697918168E6L,
  574. 3.999065731556977782435009349967042222375E6L,
  575. 1.653651390456781293163585493620758410333E6L,
  576. 4.067774359067489605179546964969435858311E5L,
  577. 5.741463295366557346748361781768833633256E4L,
  578. 4.226404539738182992856094681115746692030E3L,
  579. 1.316980975410327975566999780608618774469E2L,
  580. /* 1.0E0L */
  581. };
  582. /* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x)
  583. -.125 <= x <= +.125
  584. 1.125 <= x+1.25 <= 1.375
  585. Peak relative error = 4.9e-36 */
  586. static const long double lgam1r25a = -9.82818603515625E-2L;
  587. static const long double lgam1r25b = 1.0023929749338536146197303364159774377296E-5L;
  588. #define NRN1r25 9
  589. static const long double RN1r25[NRN1r25 + 1] =
  590. {
  591. -9.054787275312026472896002240379580536760E4L,
  592. -8.685076892989927640126560802094680794471E4L,
  593. 2.797898965448019916967849727279076547109E5L,
  594. 6.175520827134342734546868356396008898299E5L,
  595. 5.179626599589134831538516906517372619641E5L,
  596. 2.253076616239043944538380039205558242161E5L,
  597. 5.312653119599957228630544772499197307195E4L,
  598. 6.434329437514083776052669599834938898255E3L,
  599. 3.385414416983114598582554037612347549220E2L,
  600. 4.907821957946273805080625052510832015792E0L
  601. };
  602. #define NRD1r25 8
  603. static const long double RD1r25[NRD1r25 + 1] =
  604. {
  605. 3.980939377333448005389084785896660309000E5L,
  606. 1.429634893085231519692365775184490465542E6L,
  607. 2.145438946455476062850151428438668234336E6L,
  608. 1.743786661358280837020848127465970357893E6L,
  609. 8.316364251289743923178092656080441655273E5L,
  610. 2.355732939106812496699621491135458324294E5L,
  611. 3.822267399625696880571810137601310855419E4L,
  612. 3.228463206479133236028576845538387620856E3L,
  613. 1.152133170470059555646301189220117965514E2L
  614. /* 1.0E0L */
  615. };
  616. /* log gamma(x + 1) = x P(x)/Q(x)
  617. 0.0 <= x <= +0.125
  618. 1.0 <= x+1 <= 1.125
  619. Peak relative error 1.1e-35 */
  620. #define NRN1 8
  621. static const long double RN1[NRN1 + 1] =
  622. {
  623. -9.987560186094800756471055681088744738818E3L,
  624. -2.506039379419574361949680225279376329742E4L,
  625. -1.386770737662176516403363873617457652991E4L,
  626. 1.439445846078103202928677244188837130744E4L,
  627. 2.159612048879650471489449668295139990693E4L,
  628. 1.047439813638144485276023138173676047079E4L,
  629. 2.250316398054332592560412486630769139961E3L,
  630. 1.958510425467720733041971651126443864041E2L,
  631. 4.516830313569454663374271993200291219855E0L
  632. };
  633. #define NRD1 7
  634. static const long double RD1[NRD1 + 1] =
  635. {
  636. 1.730299573175751778863269333703788214547E4L,
  637. 6.807080914851328611903744668028014678148E4L,
  638. 1.090071629101496938655806063184092302439E5L,
  639. 9.124354356415154289343303999616003884080E4L,
  640. 4.262071638655772404431164427024003253954E4L,
  641. 1.096981664067373953673982635805821283581E4L,
  642. 1.431229503796575892151252708527595787588E3L,
  643. 7.734110684303689320830401788262295992921E1L
  644. /* 1.0E0 */
  645. };
  646. /* log gamma(x + 1) = x P(x)/Q(x)
  647. -0.125 <= x <= 0
  648. 0.875 <= x+1 <= 1.0
  649. Peak relative error 7.0e-37 */
  650. #define NRNr9 8
  651. static const long double RNr9[NRNr9 + 1] =
  652. {
  653. 4.441379198241760069548832023257571176884E5L,
  654. 1.273072988367176540909122090089580368732E6L,
  655. 9.732422305818501557502584486510048387724E5L,
  656. -5.040539994443998275271644292272870348684E5L,
  657. -1.208719055525609446357448132109723786736E6L,
  658. -7.434275365370936547146540554419058907156E5L,
  659. -2.075642969983377738209203358199008185741E5L,
  660. -2.565534860781128618589288075109372218042E4L,
  661. -1.032901669542994124131223797515913955938E3L,
  662. };
  663. #define NRDr9 8
  664. static const long double RDr9[NRDr9 + 1] =
  665. {
  666. -7.694488331323118759486182246005193998007E5L,
  667. -3.301918855321234414232308938454112213751E6L,
  668. -5.856830900232338906742924836032279404702E6L,
  669. -5.540672519616151584486240871424021377540E6L,
  670. -3.006530901041386626148342989181721176919E6L,
  671. -9.350378280513062139466966374330795935163E5L,
  672. -1.566179100031063346901755685375732739511E5L,
  673. -1.205016539620260779274902967231510804992E4L,
  674. -2.724583156305709733221564484006088794284E2L
  675. /* 1.0E0 */
  676. };
  677. /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
  678. static long double
  679. neval (long double x, const long double *p, int n)
  680. {
  681. long double y;
  682. p += n;
  683. y = *p--;
  684. do
  685. {
  686. y = y * x + *p--;
  687. }
  688. while (--n > 0);
  689. return y;
  690. }
  691. /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
  692. static long double
  693. deval (long double x, const long double *p, int n)
  694. {
  695. long double y;
  696. p += n;
  697. y = x + *p--;
  698. do
  699. {
  700. y = y * x + *p--;
  701. }
  702. while (--n > 0);
  703. return y;
  704. }
  705. long double
  706. lgammal_r(long double x, int *signgamp)
  707. {
  708. long double p, q, w, z, nx;
  709. int i, nn;
  710. *signgamp = 1;
  711. if (!isfinite (x))
  712. return x * x;
  713. if (x == 0.0L)
  714. {
  715. if (signbit (x))
  716. *signgamp = -1;
  717. return one / fabsl (x);
  718. }
  719. if (x < 0.0L)
  720. {
  721. q = -x;
  722. p = floorl (q);
  723. if (p == q)
  724. return (one / (p - p));
  725. i = p;
  726. if ((i & 1) == 0)
  727. *signgamp = -1;
  728. else
  729. *signgamp = 1;
  730. z = q - p;
  731. if (z > 0.5L)
  732. {
  733. p += 1.0L;
  734. z = p - q;
  735. }
  736. z = q * sinl (PIL * z);
  737. if (z == 0.0L)
  738. return (*signgamp * huge * huge);
  739. w = lgammal (q);
  740. z = logl (PIL / z) - w;
  741. return (z);
  742. }
  743. if (x < 13.5L)
  744. {
  745. p = 0.0L;
  746. nx = floorl (x + 0.5L);
  747. nn = nx;
  748. switch (nn)
  749. {
  750. case 0:
  751. /* log gamma (x + 1) = log(x) + log gamma(x) */
  752. if (x <= 0.125)
  753. {
  754. p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1);
  755. }
  756. else if (x <= 0.375)
  757. {
  758. z = x - 0.25L;
  759. p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
  760. p += lgam1r25b;
  761. p += lgam1r25a;
  762. }
  763. else if (x <= 0.625)
  764. {
  765. z = x + (1.0L - x0a);
  766. z = z - x0b;
  767. p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
  768. p = p * z * z;
  769. p = p + y0b;
  770. p = p + y0a;
  771. }
  772. else if (x <= 0.875)
  773. {
  774. z = x - 0.75L;
  775. p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
  776. p += lgam1r75b;
  777. p += lgam1r75a;
  778. }
  779. else
  780. {
  781. z = x - 1.0L;
  782. p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
  783. }
  784. p = p - logl (x);
  785. break;
  786. case 1:
  787. if (x < 0.875L)
  788. {
  789. if (x <= 0.625)
  790. {
  791. z = x + (1.0L - x0a);
  792. z = z - x0b;
  793. p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
  794. p = p * z * z;
  795. p = p + y0b;
  796. p = p + y0a;
  797. }
  798. else if (x <= 0.875)
  799. {
  800. z = x - 0.75L;
  801. p = z * neval (z, RN1r75, NRN1r75)
  802. / deval (z, RD1r75, NRD1r75);
  803. p += lgam1r75b;
  804. p += lgam1r75a;
  805. }
  806. else
  807. {
  808. z = x - 1.0L;
  809. p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
  810. }
  811. p = p - logl (x);
  812. }
  813. else if (x < 1.0L)
  814. {
  815. z = x - 1.0L;
  816. p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9);
  817. }
  818. else if (x == 1.0L)
  819. p = 0.0L;
  820. else if (x <= 1.125L)
  821. {
  822. z = x - 1.0L;
  823. p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1);
  824. }
  825. else if (x <= 1.375)
  826. {
  827. z = x - 1.25L;
  828. p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
  829. p += lgam1r25b;
  830. p += lgam1r25a;
  831. }
  832. else
  833. {
  834. /* 1.375 <= x+x0 <= 1.625 */
  835. z = x - x0a;
  836. z = z - x0b;
  837. p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
  838. p = p * z * z;
  839. p = p + y0b;
  840. p = p + y0a;
  841. }
  842. break;
  843. case 2:
  844. if (x < 1.625L)
  845. {
  846. z = x - x0a;
  847. z = z - x0b;
  848. p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
  849. p = p * z * z;
  850. p = p + y0b;
  851. p = p + y0a;
  852. }
  853. else if (x < 1.875L)
  854. {
  855. z = x - 1.75L;
  856. p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
  857. p += lgam1r75b;
  858. p += lgam1r75a;
  859. }
  860. else if (x == 2.0L)
  861. p = 0.0L;
  862. else if (x < 2.375L)
  863. {
  864. z = x - 2.0L;
  865. p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
  866. }
  867. else
  868. {
  869. z = x - 2.5L;
  870. p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
  871. p += lgam2r5b;
  872. p += lgam2r5a;
  873. }
  874. break;
  875. case 3:
  876. if (x < 2.75)
  877. {
  878. z = x - 2.5L;
  879. p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
  880. p += lgam2r5b;
  881. p += lgam2r5a;
  882. }
  883. else
  884. {
  885. z = x - 3.0L;
  886. p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3);
  887. p += lgam3b;
  888. p += lgam3a;
  889. }
  890. break;
  891. case 4:
  892. z = x - 4.0L;
  893. p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4);
  894. p += lgam4b;
  895. p += lgam4a;
  896. break;
  897. case 5:
  898. z = x - 5.0L;
  899. p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5);
  900. p += lgam5b;
  901. p += lgam5a;
  902. break;
  903. case 6:
  904. z = x - 6.0L;
  905. p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6);
  906. p += lgam6b;
  907. p += lgam6a;
  908. break;
  909. case 7:
  910. z = x - 7.0L;
  911. p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7);
  912. p += lgam7b;
  913. p += lgam7a;
  914. break;
  915. case 8:
  916. z = x - 8.0L;
  917. p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8);
  918. p += lgam8b;
  919. p += lgam8a;
  920. break;
  921. case 9:
  922. z = x - 9.0L;
  923. p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9);
  924. p += lgam9b;
  925. p += lgam9a;
  926. break;
  927. case 10:
  928. z = x - 10.0L;
  929. p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10);
  930. p += lgam10b;
  931. p += lgam10a;
  932. break;
  933. case 11:
  934. z = x - 11.0L;
  935. p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11);
  936. p += lgam11b;
  937. p += lgam11a;
  938. break;
  939. case 12:
  940. z = x - 12.0L;
  941. p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12);
  942. p += lgam12b;
  943. p += lgam12a;
  944. break;
  945. case 13:
  946. z = x - 13.0L;
  947. p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13);
  948. p += lgam13b;
  949. p += lgam13a;
  950. break;
  951. }
  952. return p;
  953. }
  954. if (x > MAXLGM)
  955. return (*signgamp * huge * huge);
  956. q = ls2pi - x;
  957. q = (x - 0.5L) * logl (x) + q;
  958. if (x > 1.0e18L)
  959. return (q);
  960. p = 1.0L / (x * x);
  961. q += neval (p, RASY, NRASY) / x;
  962. return (q);
  963. }