e_logl.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. /* $OpenBSD: e_logl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $ */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /* logl.c
  18. *
  19. * Natural logarithm for 128-bit long double precision.
  20. *
  21. *
  22. *
  23. * SYNOPSIS:
  24. *
  25. * long double x, y, logl();
  26. *
  27. * y = logl( x );
  28. *
  29. *
  30. *
  31. * DESCRIPTION:
  32. *
  33. * Returns the base e (2.718...) logarithm of x.
  34. *
  35. * The argument is separated into its exponent and fractional
  36. * parts. Use of a lookup table increases the speed of the routine.
  37. * The program uses logarithms tabulated at intervals of 1/128 to
  38. * cover the domain from approximately 0.7 to 1.4.
  39. *
  40. * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
  41. * log(1+x) = x - 0.5 x^2 + x^3 P(x) .
  42. *
  43. *
  44. *
  45. * ACCURACY:
  46. *
  47. * Relative error:
  48. * arithmetic domain # trials peak rms
  49. * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35
  50. * IEEE 0.125, 8 100000 1.2e-34 4.1e-35
  51. *
  52. *
  53. * WARNING:
  54. *
  55. * This program uses integer operations on bit fields of floating-point
  56. * numbers. It does not work with data structures other than the
  57. * structure assumed.
  58. *
  59. */
  60. #include <openlibm_math.h>
  61. #include "math_private.h"
  62. /* log(1+x) = x - .5 x^2 + x^3 l(x)
  63. -.0078125 <= x <= +.0078125
  64. peak relative error 1.2e-37 */
  65. static const long double
  66. l3 = 3.333333333333333333333333333333336096926E-1L,
  67. l4 = -2.499999999999999999999999999486853077002E-1L,
  68. l5 = 1.999999999999999999999999998515277861905E-1L,
  69. l6 = -1.666666666666666666666798448356171665678E-1L,
  70. l7 = 1.428571428571428571428808945895490721564E-1L,
  71. l8 = -1.249999999999999987884655626377588149000E-1L,
  72. l9 = 1.111111111111111093947834982832456459186E-1L,
  73. l10 = -1.000000000000532974938900317952530453248E-1L,
  74. l11 = 9.090909090915566247008015301349979892689E-2L,
  75. l12 = -8.333333211818065121250921925397567745734E-2L,
  76. l13 = 7.692307559897661630807048686258659316091E-2L,
  77. l14 = -7.144242754190814657241902218399056829264E-2L,
  78. l15 = 6.668057591071739754844678883223432347481E-2L;
  79. /* Lookup table of ln(t) - (t-1)
  80. t = 0.5 + (k+26)/128)
  81. k = 0, ..., 91 */
  82. static const long double logtbl[92] = {
  83. -5.5345593589352099112142921677820359632418E-2L,
  84. -5.2108257402767124761784665198737642086148E-2L,
  85. -4.8991686870576856279407775480686721935120E-2L,
  86. -4.5993270766361228596215288742353061431071E-2L,
  87. -4.3110481649613269682442058976885699556950E-2L,
  88. -4.0340872319076331310838085093194799765520E-2L,
  89. -3.7682072451780927439219005993827431503510E-2L,
  90. -3.5131785416234343803903228503274262719586E-2L,
  91. -3.2687785249045246292687241862699949178831E-2L,
  92. -3.0347913785027239068190798397055267411813E-2L,
  93. -2.8110077931525797884641940838507561326298E-2L,
  94. -2.5972247078357715036426583294246819637618E-2L,
  95. -2.3932450635346084858612873953407168217307E-2L,
  96. -2.1988775689981395152022535153795155900240E-2L,
  97. -2.0139364778244501615441044267387667496733E-2L,
  98. -1.8382413762093794819267536615342902718324E-2L,
  99. -1.6716169807550022358923589720001638093023E-2L,
  100. -1.5138929457710992616226033183958974965355E-2L,
  101. -1.3649036795397472900424896523305726435029E-2L,
  102. -1.2244881690473465543308397998034325468152E-2L,
  103. -1.0924898127200937840689817557742469105693E-2L,
  104. -9.6875626072830301572839422532631079809328E-3L,
  105. -8.5313926245226231463436209313499745894157E-3L,
  106. -7.4549452072765973384933565912143044991706E-3L,
  107. -6.4568155251217050991200599386801665681310E-3L,
  108. -5.5356355563671005131126851708522185605193E-3L,
  109. -4.6900728132525199028885749289712348829878E-3L,
  110. -3.9188291218610470766469347968659624282519E-3L,
  111. -3.2206394539524058873423550293617843896540E-3L,
  112. -2.5942708080877805657374888909297113032132E-3L,
  113. -2.0385211375711716729239156839929281289086E-3L,
  114. -1.5522183228760777967376942769773768850872E-3L,
  115. -1.1342191863606077520036253234446621373191E-3L,
  116. -7.8340854719967065861624024730268350459991E-4L,
  117. -4.9869831458030115699628274852562992756174E-4L,
  118. -2.7902661731604211834685052867305795169688E-4L,
  119. -1.2335696813916860754951146082826952093496E-4L,
  120. -3.0677461025892873184042490943581654591817E-5L,
  121. #define ZERO logtbl[38]
  122. 0.0000000000000000000000000000000000000000E0L,
  123. -3.0359557945051052537099938863236321874198E-5L,
  124. -1.2081346403474584914595395755316412213151E-4L,
  125. -2.7044071846562177120083903771008342059094E-4L,
  126. -4.7834133324631162897179240322783590830326E-4L,
  127. -7.4363569786340080624467487620270965403695E-4L,
  128. -1.0654639687057968333207323853366578860679E-3L,
  129. -1.4429854811877171341298062134712230604279E-3L,
  130. -1.8753781835651574193938679595797367137975E-3L,
  131. -2.3618380914922506054347222273705859653658E-3L,
  132. -2.9015787624124743013946600163375853631299E-3L,
  133. -3.4938307889254087318399313316921940859043E-3L,
  134. -4.1378413103128673800485306215154712148146E-3L,
  135. -4.8328735414488877044289435125365629849599E-3L,
  136. -5.5782063183564351739381962360253116934243E-3L,
  137. -6.3731336597098858051938306767880719015261E-3L,
  138. -7.2169643436165454612058905294782949315193E-3L,
  139. -8.1090214990427641365934846191367315083867E-3L,
  140. -9.0486422112807274112838713105168375482480E-3L,
  141. -1.0035177140880864314674126398350812606841E-2L,
  142. -1.1067990155502102718064936259435676477423E-2L,
  143. -1.2146457974158024928196575103115488672416E-2L,
  144. -1.3269969823361415906628825374158424754308E-2L,
  145. -1.4437927104692837124388550722759686270765E-2L,
  146. -1.5649743073340777659901053944852735064621E-2L,
  147. -1.6904842527181702880599758489058031645317E-2L,
  148. -1.8202661505988007336096407340750378994209E-2L,
  149. -1.9542647000370545390701192438691126552961E-2L,
  150. -2.0924256670080119637427928803038530924742E-2L,
  151. -2.2346958571309108496179613803760727786257E-2L,
  152. -2.3810230892650362330447187267648486279460E-2L,
  153. -2.5313561699385640380910474255652501521033E-2L,
  154. -2.6856448685790244233704909690165496625399E-2L,
  155. -2.8438398935154170008519274953860128449036E-2L,
  156. -3.0058928687233090922411781058956589863039E-2L,
  157. -3.1717563112854831855692484086486099896614E-2L,
  158. -3.3413836095418743219397234253475252001090E-2L,
  159. -3.5147290019036555862676702093393332533702E-2L,
  160. -3.6917475563073933027920505457688955423688E-2L,
  161. -3.8723951502862058660874073462456610731178E-2L,
  162. -4.0566284516358241168330505467000838017425E-2L,
  163. -4.2444048996543693813649967076598766917965E-2L,
  164. -4.4356826869355401653098777649745233339196E-2L,
  165. -4.6304207416957323121106944474331029996141E-2L,
  166. -4.8285787106164123613318093945035804818364E-2L,
  167. -5.0301169421838218987124461766244507342648E-2L,
  168. -5.2349964705088137924875459464622098310997E-2L,
  169. -5.4431789996103111613753440311680967840214E-2L,
  170. -5.6546268881465384189752786409400404404794E-2L,
  171. -5.8693031345788023909329239565012647817664E-2L,
  172. -6.0871713627532018185577188079210189048340E-2L,
  173. -6.3081958078862169742820420185833800925568E-2L,
  174. -6.5323413029406789694910800219643791556918E-2L,
  175. -6.7595732653791419081537811574227049288168E-2L
  176. };
  177. /* ln(2) = ln2a + ln2b with extended precision. */
  178. static const long double
  179. ln2a = 6.93145751953125e-1L,
  180. ln2b = 1.4286068203094172321214581765680755001344E-6L;
  181. long double
  182. logl(long double x)
  183. {
  184. long double z, y, w;
  185. ieee_quad_shape_type u, t;
  186. unsigned int m;
  187. int k, e;
  188. u.value = x;
  189. m = u.parts32.mswhi;
  190. /* Check for IEEE special cases. */
  191. k = m & 0x7fffffff;
  192. /* log(0) = -infinity. */
  193. if ((k | u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
  194. {
  195. return -0.5L / ZERO;
  196. }
  197. /* log ( x < 0 ) = NaN */
  198. if (m & 0x80000000)
  199. {
  200. return (x - x) / ZERO;
  201. }
  202. /* log (infinity or NaN) */
  203. if (k >= 0x7fff0000)
  204. {
  205. return x + x;
  206. }
  207. /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
  208. e = (int) (m >> 16) - (int) 0x3ffe;
  209. m &= 0xffff;
  210. u.parts32.mswhi = m | 0x3ffe0000;
  211. m |= 0x10000;
  212. /* Find lookup table index k from high order bits of the significand. */
  213. if (m < 0x16800)
  214. {
  215. k = (m - 0xff00) >> 9;
  216. /* t is the argument 0.5 + (k+26)/128
  217. of the nearest item to u in the lookup table. */
  218. t.parts32.mswhi = 0x3fff0000 + (k << 9);
  219. t.parts32.mswlo = 0;
  220. t.parts32.lswhi = 0;
  221. t.parts32.lswlo = 0;
  222. u.parts32.mswhi += 0x10000;
  223. e -= 1;
  224. k += 64;
  225. }
  226. else
  227. {
  228. k = (m - 0xfe00) >> 10;
  229. t.parts32.mswhi = 0x3ffe0000 + (k << 10);
  230. t.parts32.mswlo = 0;
  231. t.parts32.lswhi = 0;
  232. t.parts32.lswlo = 0;
  233. }
  234. /* On this interval the table is not used due to cancellation error. */
  235. if ((x <= 1.0078125L) && (x >= 0.9921875L))
  236. {
  237. z = x - 1.0L;
  238. k = 64;
  239. t.value = 1.0L;
  240. e = 0;
  241. }
  242. else
  243. {
  244. /* log(u) = log( t u/t ) = log(t) + log(u/t)
  245. log(t) is tabulated in the lookup table.
  246. Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t.
  247. cf. Cody & Waite. */
  248. z = (u.value - t.value) / t.value;
  249. }
  250. /* Series expansion of log(1+z). */
  251. w = z * z;
  252. y = ((((((((((((l15 * z
  253. + l14) * z
  254. + l13) * z
  255. + l12) * z
  256. + l11) * z
  257. + l10) * z
  258. + l9) * z
  259. + l8) * z
  260. + l7) * z
  261. + l6) * z
  262. + l5) * z
  263. + l4) * z
  264. + l3) * z * w;
  265. y -= 0.5 * w;
  266. y += e * ln2b; /* Base 2 exponent offset times ln(2). */
  267. y += z;
  268. y += logtbl[k-26]; /* log(t) - (t-1) */
  269. y += (t.value - 1.0L);
  270. y += e * ln2a;
  271. return y;
  272. }