| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 | /*	$OpenBSD: e_logl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*//* * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *//*							logl.c * * Natural logarithm for 128-bit long double precision. * * * * SYNOPSIS: * * long double x, y, logl(); * * y = logl( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of x. * * The argument is separated into its exponent and fractional * parts.  Use of a lookup table increases the speed of the routine. * The program uses logarithms tabulated at intervals of 1/128 to * cover the domain from approximately 0.7 to 1.4. * * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by *     log(1+x) = x - 0.5 x^2 + x^3 P(x) . * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE   0.875, 1.125   100000      1.2e-34    4.1e-35 *    IEEE   0.125, 8       100000      1.2e-34    4.1e-35 * * * WARNING: * * This program uses integer operations on bit fields of floating-point * numbers.  It does not work with data structures other than the * structure assumed. * */#include <openlibm_math.h>#include "math_private.h"/* log(1+x) = x - .5 x^2 + x^3 l(x)   -.0078125 <= x <= +.0078125   peak relative error 1.2e-37 */static const long doublel3 =   3.333333333333333333333333333333336096926E-1L,l4 =  -2.499999999999999999999999999486853077002E-1L,l5 =   1.999999999999999999999999998515277861905E-1L,l6 =  -1.666666666666666666666798448356171665678E-1L,l7 =   1.428571428571428571428808945895490721564E-1L,l8 =  -1.249999999999999987884655626377588149000E-1L,l9 =   1.111111111111111093947834982832456459186E-1L,l10 = -1.000000000000532974938900317952530453248E-1L,l11 =  9.090909090915566247008015301349979892689E-2L,l12 = -8.333333211818065121250921925397567745734E-2L,l13 =  7.692307559897661630807048686258659316091E-2L,l14 = -7.144242754190814657241902218399056829264E-2L,l15 =  6.668057591071739754844678883223432347481E-2L;/* Lookup table of ln(t) - (t-1)    t = 0.5 + (k+26)/128)    k = 0, ..., 91   */static const long double logtbl[92] = {-5.5345593589352099112142921677820359632418E-2L,-5.2108257402767124761784665198737642086148E-2L,-4.8991686870576856279407775480686721935120E-2L,-4.5993270766361228596215288742353061431071E-2L,-4.3110481649613269682442058976885699556950E-2L,-4.0340872319076331310838085093194799765520E-2L,-3.7682072451780927439219005993827431503510E-2L,-3.5131785416234343803903228503274262719586E-2L,-3.2687785249045246292687241862699949178831E-2L,-3.0347913785027239068190798397055267411813E-2L,-2.8110077931525797884641940838507561326298E-2L,-2.5972247078357715036426583294246819637618E-2L,-2.3932450635346084858612873953407168217307E-2L,-2.1988775689981395152022535153795155900240E-2L,-2.0139364778244501615441044267387667496733E-2L,-1.8382413762093794819267536615342902718324E-2L,-1.6716169807550022358923589720001638093023E-2L,-1.5138929457710992616226033183958974965355E-2L,-1.3649036795397472900424896523305726435029E-2L,-1.2244881690473465543308397998034325468152E-2L,-1.0924898127200937840689817557742469105693E-2L,-9.6875626072830301572839422532631079809328E-3L,-8.5313926245226231463436209313499745894157E-3L,-7.4549452072765973384933565912143044991706E-3L,-6.4568155251217050991200599386801665681310E-3L,-5.5356355563671005131126851708522185605193E-3L,-4.6900728132525199028885749289712348829878E-3L,-3.9188291218610470766469347968659624282519E-3L,-3.2206394539524058873423550293617843896540E-3L,-2.5942708080877805657374888909297113032132E-3L,-2.0385211375711716729239156839929281289086E-3L,-1.5522183228760777967376942769773768850872E-3L,-1.1342191863606077520036253234446621373191E-3L,-7.8340854719967065861624024730268350459991E-4L,-4.9869831458030115699628274852562992756174E-4L,-2.7902661731604211834685052867305795169688E-4L,-1.2335696813916860754951146082826952093496E-4L,-3.0677461025892873184042490943581654591817E-5L,#define ZERO logtbl[38] 0.0000000000000000000000000000000000000000E0L,-3.0359557945051052537099938863236321874198E-5L,-1.2081346403474584914595395755316412213151E-4L,-2.7044071846562177120083903771008342059094E-4L,-4.7834133324631162897179240322783590830326E-4L,-7.4363569786340080624467487620270965403695E-4L,-1.0654639687057968333207323853366578860679E-3L,-1.4429854811877171341298062134712230604279E-3L,-1.8753781835651574193938679595797367137975E-3L,-2.3618380914922506054347222273705859653658E-3L,-2.9015787624124743013946600163375853631299E-3L,-3.4938307889254087318399313316921940859043E-3L,-4.1378413103128673800485306215154712148146E-3L,-4.8328735414488877044289435125365629849599E-3L,-5.5782063183564351739381962360253116934243E-3L,-6.3731336597098858051938306767880719015261E-3L,-7.2169643436165454612058905294782949315193E-3L,-8.1090214990427641365934846191367315083867E-3L,-9.0486422112807274112838713105168375482480E-3L,-1.0035177140880864314674126398350812606841E-2L,-1.1067990155502102718064936259435676477423E-2L,-1.2146457974158024928196575103115488672416E-2L,-1.3269969823361415906628825374158424754308E-2L,-1.4437927104692837124388550722759686270765E-2L,-1.5649743073340777659901053944852735064621E-2L,-1.6904842527181702880599758489058031645317E-2L,-1.8202661505988007336096407340750378994209E-2L,-1.9542647000370545390701192438691126552961E-2L,-2.0924256670080119637427928803038530924742E-2L,-2.2346958571309108496179613803760727786257E-2L,-2.3810230892650362330447187267648486279460E-2L,-2.5313561699385640380910474255652501521033E-2L,-2.6856448685790244233704909690165496625399E-2L,-2.8438398935154170008519274953860128449036E-2L,-3.0058928687233090922411781058956589863039E-2L,-3.1717563112854831855692484086486099896614E-2L,-3.3413836095418743219397234253475252001090E-2L,-3.5147290019036555862676702093393332533702E-2L,-3.6917475563073933027920505457688955423688E-2L,-3.8723951502862058660874073462456610731178E-2L,-4.0566284516358241168330505467000838017425E-2L,-4.2444048996543693813649967076598766917965E-2L,-4.4356826869355401653098777649745233339196E-2L,-4.6304207416957323121106944474331029996141E-2L,-4.8285787106164123613318093945035804818364E-2L,-5.0301169421838218987124461766244507342648E-2L,-5.2349964705088137924875459464622098310997E-2L,-5.4431789996103111613753440311680967840214E-2L,-5.6546268881465384189752786409400404404794E-2L,-5.8693031345788023909329239565012647817664E-2L,-6.0871713627532018185577188079210189048340E-2L,-6.3081958078862169742820420185833800925568E-2L,-6.5323413029406789694910800219643791556918E-2L,-6.7595732653791419081537811574227049288168E-2L};/* ln(2) = ln2a + ln2b with extended precision. */static const long double  ln2a = 6.93145751953125e-1L,  ln2b = 1.4286068203094172321214581765680755001344E-6L;long doublelogl(long double x){  long double z, y, w;  ieee_quad_shape_type u, t;  unsigned int m;  int k, e;  u.value = x;  m = u.parts32.mswhi;  /* Check for IEEE special cases.  */  k = m & 0x7fffffff;  /* log(0) = -infinity. */  if ((k | u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)    {      return -0.5L / ZERO;    }  /* log ( x < 0 ) = NaN */  if (m & 0x80000000)    {      return (x - x) / ZERO;    }  /* log (infinity or NaN) */  if (k >= 0x7fff0000)    {      return x + x;    }  /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625  */  e = (int) (m >> 16) - (int) 0x3ffe;  m &= 0xffff;  u.parts32.mswhi = m | 0x3ffe0000;  m |= 0x10000;  /* Find lookup table index k from high order bits of the significand. */  if (m < 0x16800)    {      k = (m - 0xff00) >> 9;      /* t is the argument 0.5 + (k+26)/128	 of the nearest item to u in the lookup table.  */      t.parts32.mswhi = 0x3fff0000 + (k << 9);      t.parts32.mswlo = 0;      t.parts32.lswhi = 0;      t.parts32.lswlo = 0;      u.parts32.mswhi += 0x10000;      e -= 1;      k += 64;    }  else    {      k = (m - 0xfe00) >> 10;      t.parts32.mswhi = 0x3ffe0000 + (k << 10);      t.parts32.mswlo = 0;      t.parts32.lswhi = 0;      t.parts32.lswlo = 0;    }  /* On this interval the table is not used due to cancellation error.  */  if ((x <= 1.0078125L) && (x >= 0.9921875L))    {      z = x - 1.0L;      k = 64;      t.value  = 1.0L;      e = 0;    }  else    {      /* log(u) = log( t u/t ) = log(t) + log(u/t)	 log(t) is tabulated in the lookup table.	 Express log(u/t) = log(1+z),  where z = u/t - 1 = (u-t)/t.	cf. Cody & Waite. */      z = (u.value - t.value) / t.value;    }  /* Series expansion of log(1+z).  */  w = z * z;  y = ((((((((((((l15 * z		  + l14) * z		 + l13) * z		+ l12) * z	       + l11) * z	      + l10) * z	     + l9) * z	    + l8) * z	   + l7) * z	  + l6) * z	 + l5) * z	+ l4) * z       + l3) * z * w;  y -= 0.5 * w;  y += e * ln2b;  /* Base 2 exponent offset times ln(2).  */  y += z;  y += logtbl[k-26]; /* log(t) - (t-1) */  y += (t.value - 1.0L);  y += e * ln2a;  return y;}
 |