123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 |
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* powl(x,y) return x**y
- *
- * n
- * Method: Let x = 2 * (1+f)
- * 1. Compute and return log2(x) in two pieces:
- * log2(x) = w1 + w2,
- * where w1 has 113-53 = 60 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
- * arithmetic, where |y'|<=0.5.
- * 3. Return x**y = 2**n*exp(y'*log2)
- *
- * Special cases:
- * 1. (anything) ** 0 is 1
- * 2. (anything) ** 1 is itself
- * 3. (anything) ** NAN is NAN
- * 4. NAN ** (anything except 0) is NAN
- * 5. +-(|x| > 1) ** +INF is +INF
- * 6. +-(|x| > 1) ** -INF is +0
- * 7. +-(|x| < 1) ** +INF is +0
- * 8. +-(|x| < 1) ** -INF is +INF
- * 9. +-1 ** +-INF is NAN
- * 10. +0 ** (+anything except 0, NAN) is +0
- * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
- * 12. +0 ** (-anything except 0, NAN) is +INF
- * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
- * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- * 15. +INF ** (+anything except 0,NAN) is +INF
- * 16. +INF ** (-anything except 0,NAN) is +0
- * 17. -INF ** (anything) = -0 ** (-anything)
- * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- * 19. (-anything except 0 and inf) ** (non-integer) is NAN
- *
- */
- #include <openlibm_math.h>
- #include "math_private.h"
- static const long double bp[] = {
- 1.0L,
- 1.5L,
- };
- /* log_2(1.5) */
- static const long double dp_h[] = {
- 0.0,
- 5.8496250072115607565592654282227158546448E-1L
- };
- /* Low part of log_2(1.5) */
- static const long double dp_l[] = {
- 0.0,
- 1.0579781240112554492329533686862998106046E-16L
- };
- static const long double zero = 0.0L,
- one = 1.0L,
- two = 2.0L,
- two113 = 1.0384593717069655257060992658440192E34L,
- huge = 1.0e3000L,
- tiny = 1.0e-3000L;
- /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
- z = (x-1)/(x+1)
- 1 <= x <= 1.25
- Peak relative error 2.3e-37 */
- static const long double LN[] =
- {
- -3.0779177200290054398792536829702930623200E1L,
- 6.5135778082209159921251824580292116201640E1L,
- -4.6312921812152436921591152809994014413540E1L,
- 1.2510208195629420304615674658258363295208E1L,
- -9.9266909031921425609179910128531667336670E-1L
- };
- static const long double LD[] =
- {
- -5.129862866715009066465422805058933131960E1L,
- 1.452015077564081884387441590064272782044E2L,
- -1.524043275549860505277434040464085593165E2L,
- 7.236063513651544224319663428634139768808E1L,
- -1.494198912340228235853027849917095580053E1L
- /* 1.0E0 */
- };
- /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
- 0 <= x <= 0.5
- Peak relative error 5.7e-38 */
- static const long double PN[] =
- {
- 5.081801691915377692446852383385968225675E8L,
- 9.360895299872484512023336636427675327355E6L,
- 4.213701282274196030811629773097579432957E4L,
- 5.201006511142748908655720086041570288182E1L,
- 9.088368420359444263703202925095675982530E-3L,
- };
- static const long double PD[] =
- {
- 3.049081015149226615468111430031590411682E9L,
- 1.069833887183886839966085436512368982758E8L,
- 8.259257717868875207333991924545445705394E5L,
- 1.872583833284143212651746812884298360922E3L,
- /* 1.0E0 */
- };
- static const long double
- /* ln 2 */
- lg2 = 6.9314718055994530941723212145817656807550E-1L,
- lg2_h = 6.9314718055994528622676398299518041312695E-1L,
- lg2_l = 2.3190468138462996154948554638754786504121E-17L,
- ovt = 8.0085662595372944372e-0017L,
- /* 2/(3*log(2)) */
- cp = 9.6179669392597560490661645400126142495110E-1L,
- cp_h = 9.6179669392597555432899980587535537779331E-1L,
- cp_l = 5.0577616648125906047157785230014751039424E-17L;
- long double
- powl(long double x, long double y)
- {
- long double z, ax, z_h, z_l, p_h, p_l;
- long double yy1, t1, t2, r, s, t, u, v, w;
- long double s2, s_h, s_l, t_h, t_l;
- int32_t i, j, k, yisint, n;
- u_int32_t ix, iy;
- int32_t hx, hy;
- ieee_quad_shape_type o, p, q;
- p.value = x;
- hx = p.parts32.mswhi;
- ix = hx & 0x7fffffff;
- q.value = y;
- hy = q.parts32.mswhi;
- iy = hy & 0x7fffffff;
- /* y==zero: x**0 = 1 */
- if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
- return one;
- /* 1.0**y = 1; -1.0**+-Inf = 1 */
- if (x == one)
- return one;
- if (x == -1.0L && iy == 0x7fff0000
- && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
- return one;
- /* +-NaN return x+y */
- if ((ix > 0x7fff0000)
- || ((ix == 0x7fff0000)
- && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
- || (iy > 0x7fff0000)
- || ((iy == 0x7fff0000)
- && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
- return x + y;
- /* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
- */
- yisint = 0;
- if (hx < 0)
- {
- if (iy >= 0x40700000) /* 2^113 */
- yisint = 2; /* even integer y */
- else if (iy >= 0x3fff0000) /* 1.0 */
- {
- if (floorl (y) == y)
- {
- z = 0.5 * y;
- if (floorl (z) == z)
- yisint = 2;
- else
- yisint = 1;
- }
- }
- }
- /* special value of y */
- if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
- {
- if (iy == 0x7fff0000) /* y is +-inf */
- {
- if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
- p.parts32.lswlo) == 0)
- return y - y; /* +-1**inf is NaN */
- else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
- return (hy >= 0) ? y : zero;
- else /* (|x|<1)**-,+inf = inf,0 */
- return (hy < 0) ? -y : zero;
- }
- if (iy == 0x3fff0000)
- { /* y is +-1 */
- if (hy < 0)
- return one / x;
- else
- return x;
- }
- if (hy == 0x40000000)
- return x * x; /* y is 2 */
- if (hy == 0x3ffe0000)
- { /* y is 0.5 */
- if (hx >= 0) /* x >= +0 */
- return sqrtl (x);
- }
- }
- ax = fabsl (x);
- /* special value of x */
- if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
- {
- if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
- {
- z = ax; /*x is +-0,+-inf,+-1 */
- if (hy < 0)
- z = one / z; /* z = (1/|x|) */
- if (hx < 0)
- {
- if (((ix - 0x3fff0000) | yisint) == 0)
- {
- z = (z - z) / (z - z); /* (-1)**non-int is NaN */
- }
- else if (yisint == 1)
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- return z;
- }
- }
- /* (x<0)**(non-int) is NaN */
- if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
- return (x - x) / (x - x);
- /* |y| is huge.
- 2^-16495 = 1/2 of smallest representable value.
- If (1 - 1/131072)^y underflows, y > 1.4986e9 */
- if (iy > 0x401d654b)
- {
- /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
- if (iy > 0x407d654b)
- {
- if (ix <= 0x3ffeffff)
- return (hy < 0) ? huge * huge : tiny * tiny;
- if (ix >= 0x3fff0000)
- return (hy > 0) ? huge * huge : tiny * tiny;
- }
- /* over/underflow if x is not close to one */
- if (ix < 0x3ffeffff)
- return (hy < 0) ? huge * huge : tiny * tiny;
- if (ix > 0x3fff0000)
- return (hy > 0) ? huge * huge : tiny * tiny;
- }
- n = 0;
- /* take care subnormal number */
- if (ix < 0x00010000)
- {
- ax *= two113;
- n -= 113;
- o.value = ax;
- ix = o.parts32.mswhi;
- }
- n += ((ix) >> 16) - 0x3fff;
- j = ix & 0x0000ffff;
- /* determine interval */
- ix = j | 0x3fff0000; /* normalize ix */
- if (j <= 0x3988)
- k = 0; /* |x|<sqrt(3/2) */
- else if (j < 0xbb67)
- k = 1; /* |x|<sqrt(3) */
- else
- {
- k = 0;
- n += 1;
- ix -= 0x00010000;
- }
- o.value = ax;
- o.parts32.mswhi = ix;
- ax = o.value;
- /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
- v = one / (ax + bp[k]);
- s = u * v;
- s_h = s;
- o.value = s_h;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- s_h = o.value;
- /* t_h=ax+bp[k] High */
- t_h = ax + bp[k];
- o.value = t_h;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- t_h = o.value;
- t_l = ax - (t_h - bp[k]);
- s_l = v * ((u - s_h * t_h) - s_h * t_l);
- /* compute log(ax) */
- s2 = s * s;
- u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
- v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
- r = s2 * s2 * u / v;
- r += s_l * (s_h + s);
- s2 = s_h * s_h;
- t_h = 3.0 + s2 + r;
- o.value = t_h;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- t_h = o.value;
- t_l = r - ((t_h - 3.0) - s2);
- /* u+v = s*(1+...) */
- u = s_h * t_h;
- v = s_l * t_h + t_l * s;
- /* 2/(3log2)*(s+...) */
- p_h = u + v;
- o.value = p_h;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- p_h = o.value;
- p_l = v - (p_h - u);
- z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
- z_l = cp_l * p_h + p_l * cp + dp_l[k];
- /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (long double) n;
- t1 = (((z_h + z_l) + dp_h[k]) + t);
- o.value = t1;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- t1 = o.value;
- t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
- /* s (sign of result -ve**odd) = -1 else = 1 */
- s = one;
- if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
- s = -one; /* (-ve)**(odd int) */
- /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
- yy1 = y;
- o.value = yy1;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- yy1 = o.value;
- p_l = (y - yy1) * t1 + y * t2;
- p_h = yy1 * t1;
- z = p_l + p_h;
- o.value = z;
- j = o.parts32.mswhi;
- if (j >= 0x400d0000) /* z >= 16384 */
- {
- /* if z > 16384 */
- if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
- o.parts32.lswlo) != 0)
- return s * huge * huge; /* overflow */
- else
- {
- if (p_l + ovt > z - p_h)
- return s * huge * huge; /* overflow */
- }
- }
- else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
- {
- /* z < -16495 */
- if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
- o.parts32.lswlo)
- != 0)
- return s * tiny * tiny; /* underflow */
- else
- {
- if (p_l <= z - p_h)
- return s * tiny * tiny; /* underflow */
- }
- }
- /* compute 2**(p_h+p_l) */
- i = j & 0x7fffffff;
- k = (i >> 16) - 0x3fff;
- n = 0;
- if (i > 0x3ffe0000)
- { /* if |z| > 0.5, set n = [z+0.5] */
- n = floorl (z + 0.5L);
- t = n;
- p_h -= t;
- }
- t = p_l + p_h;
- o.value = t;
- o.parts32.lswlo = 0;
- o.parts32.lswhi &= 0xf8000000;
- t = o.value;
- u = t * lg2_h;
- v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
- z = u + v;
- w = v - (z - u);
- /* exp(z) */
- t = z * z;
- u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
- v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
- t1 = z - t * u / v;
- r = (z * t1) / (t1 - two) - (w + z * w);
- z = one - (r - z);
- o.value = z;
- j = o.parts32.mswhi;
- j += (n << 16);
- if ((j >> 16) <= 0)
- z = scalbnl (z, n); /* subnormal output */
- else
- {
- o.parts32.mswhi = j;
- z = o.value;
- }
- return s * z;
- }
|