123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- /* @(#)e_fmod.c 1.3 95/01/18 */
- /*-
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #include <sys/types.h>
- #include <machine/ieee.h>
- #include <float.h>
- #include <openlibm_math.h>
- #include <stdint.h>
- #include "math_private.h"
- #define BIAS (LDBL_MAX_EXP - 1)
- /*
- * These macros add and remove an explicit integer bit in front of the
- * fractional mantissa, if the architecture doesn't have such a bit by
- * default already.
- */
- #ifdef LDBL_IMPLICIT_NBIT
- #define LDBL_NBIT 0
- #define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
- #define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS)
- #else
- #define LDBL_NBIT 0x80000000
- #define SET_NBIT(hx) (hx)
- #define HFRAC_BITS (EXT_FRACHBITS + EXT_FRACHMBITS - 1)
- #endif
- #define MANL_SHIFT (EXT_FRACLMBITS + EXT_FRACLBITS - 1)
- static const long double Zero[] = {0.0L, -0.0L};
- /*
- * Return the IEEE remainder and set *quo to the last n bits of the
- * quotient, rounded to the nearest integer. We choose n=31 because
- * we wind up computing all the integer bits of the quotient anyway as
- * a side-effect of computing the remainder by the shift and subtract
- * method. In practice, this is far more bits than are needed to use
- * remquo in reduction algorithms.
- *
- * Assumptions:
- * - The low part of the mantissa fits in a manl_t exactly.
- * - The high part of the mantissa fits in an int64_t with enough room
- * for an explicit integer bit in front of the fractional bits.
- */
- long double
- remquol(long double x, long double y, int *quo)
- {
- int64_t hx,hz,hy,_hx;
- uint64_t lx,ly,lz;
- uint64_t sx,sxy;
- int ix,iy,n,q;
- GET_LDOUBLE_WORDS64(hx,lx,x);
- GET_LDOUBLE_WORDS64(hy,ly,y);
- sx = (hx>>48)&0x8000;
- sxy = sx ^ ((hy>>48)&0x8000);
- hx &= 0x7fffffffffffffffLL; /* |x| */
- hy &= 0x7fffffffffffffffLL; /* |y| */
- SET_LDOUBLE_WORDS64(x,hx,lx);
- SET_LDOUBLE_WORDS64(y,hy,ly);
- /* purge off exception values */
- if((hy|ly)==0 || /* y=0 */
- ((hx>>48) == BIAS + LDBL_MAX_EXP) || /* or x not finite */
- ((hy>>48) == BIAS + LDBL_MAX_EXP &&
- (((hy&0x0000ffffffffffffLL)&~LDBL_NBIT)|ly)!=0)) /* or y is NaN */
- return (x*y)/(x*y);
- if((hx>>48)<=(hy>>48)) {
- if(((hx>>48)<(hy>>48)) ||
- ((hx&0x0000ffffffffffffLL)<=(hy&0x0000ffffffffffffLL) &&
- ((hx&0x0000ffffffffffffLL)<(hy&0x0000ffffffffffffLL) ||
- lx<ly))) {
- q = 0;
- goto fixup; /* |x|<|y| return x or x-y */
- }
- if((hx&0x0000ffffffffffffLL)==(hy&0x0000ffffffffffffLL) &&
- lx==ly) {
- *quo = 1;
- return Zero[sx!=0]; /* |x|=|y| return x*0*/
- }
- }
- /* determine ix = ilogb(x) */
- if((hx>>48) == 0) { /* subnormal x */
- x *= 0x1.0p512;
- GET_LDOUBLE_WORDS64(hx,lx,x);
- ix = (hx>>48) - (BIAS + 512);
- } else {
- ix = (hx>>48) - BIAS;
- }
- /* determine iy = ilogb(y) */
- if((hy>>48) == 0) { /* subnormal y */
- y *= 0x1.0p512;
- GET_LDOUBLE_WORDS64(hy,ly,y);
- iy = (hy>>48) - (BIAS + 512);
- } else {
- iy = (hy>>48) - BIAS;
- }
- /* set up {hx,lx}, {hy,ly} and align y to x */
- _hx = SET_NBIT(hx) & 0x0000ffffffffffffLL;
- hy = SET_NBIT(hy);
- /* fix point fmod */
- n = ix - iy;
- q = 0;
- while(n--) {
- hz=_hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
- if(hz<0){_hx = _hx+_hx+(lx>>MANL_SHIFT); lx = lx+lx;}
- else {_hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;}
- q <<= 1;
- }
- hz=_hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
- if(hz>=0) {_hx=hz;lx=lz;q++;}
- /* convert back to floating value and restore the sign */
- if((_hx|lx)==0) { /* return sign(x)*0 */
- *quo = (sxy ? -q : q);
- return Zero[sx!=0];
- }
- while(_hx<(1ULL<<HFRAC_BITS)) { /* normalize x */
- _hx = _hx+_hx+(lx>>MANL_SHIFT); lx = lx+lx;
- iy -= 1;
- }
- hx = (hx&0xffff000000000000LL) | (_hx&0x0000ffffffffffffLL);
- if (iy < LDBL_MIN_EXP) {
- hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS + 512)<<48;
- SET_LDOUBLE_WORDS64(x,hx,lx);
- x *= 0x1p-512;
- GET_LDOUBLE_WORDS64(hx,lx,x);
- } else {
- hx = (hx&0x0000ffffffffffffLL) | (uint64_t)(iy + BIAS)<<48;
- }
- hx &= 0x7fffffffffffffffLL;
- SET_LDOUBLE_WORDS64(x,hx,lx);
- fixup:
- y = fabsl(y);
- if (y < LDBL_MIN * 2) {
- if (x+x>y || (x+x==y && (q & 1))) {
- q++;
- x-=y;
- }
- } else if (x>0.5*y || (x==0.5*y && (q & 1))) {
- q++;
- x-=y;
- }
- GET_LDOUBLE_MSW64(hx,x);
- hx ^= sx;
- SET_LDOUBLE_MSW64(x,hx);
- q &= 0x7fffffff;
- *quo = (sxy ? -q : q);
- return x;
- }
|