123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 |
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* lgammal_r(x, signgamp)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method:
- * 1. Argument Reduction for 0 < x <= 8
- * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
- * reduce x to a number in [1.5,2.5] by
- * lgamma(1+s) = log(s) + lgamma(s)
- * for example,
- * lgamma(7.3) = log(6.3) + lgamma(6.3)
- * = log(6.3*5.3) + lgamma(5.3)
- * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
- * 2. Polynomial approximation of lgamma around its
- * minimun ymin=1.461632144968362245 to maintain monotonicity.
- * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
- * Let z = x-ymin;
- * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
- * 2. Rational approximation in the primary interval [2,3]
- * We use the following approximation:
- * s = x-2.0;
- * lgamma(x) = 0.5*s + s*P(s)/Q(s)
- * Our algorithms are based on the following observation
- *
- * zeta(2)-1 2 zeta(3)-1 3
- * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
- * 2 3
- *
- * where Euler = 0.5771... is the Euler constant, which is very
- * close to 0.5.
- *
- * 3. For x>=8, we have
- * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
- * (better formula:
- * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
- * Let z = 1/x, then we approximation
- * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
- * by
- * 3 5 11
- * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
- *
- * 4. For negative x, since (G is gamma function)
- * -x*G(-x)*G(x) = pi/sin(pi*x),
- * we have
- * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
- * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
- * Hence, for x<0, signgam = sign(sin(pi*x)) and
- * lgamma(x) = log(|Gamma(x)|)
- * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
- * Note: one should avoid compute pi*(-x) directly in the
- * computation of sin(pi*(-x)).
- *
- * 5. Special Cases
- * lgamma(2+s) ~ s*(1-Euler) for tiny s
- * lgamma(1)=lgamma(2)=0
- * lgamma(x) ~ -log(x) for tiny x
- * lgamma(0) = lgamma(inf) = inf
- * lgamma(-integer) = +-inf
- *
- */
- #include <openlibm_math.h>
- #include "math_private.h"
- static const long double
- half = 0.5L,
- one = 1.0L,
- pi = 3.14159265358979323846264L,
- two63 = 9.223372036854775808e18L,
- /* lgam(1+x) = 0.5 x + x a(x)/b(x)
- -0.268402099609375 <= x <= 0
- peak relative error 6.6e-22 */
- a0 = -6.343246574721079391729402781192128239938E2L,
- a1 = 1.856560238672465796768677717168371401378E3L,
- a2 = 2.404733102163746263689288466865843408429E3L,
- a3 = 8.804188795790383497379532868917517596322E2L,
- a4 = 1.135361354097447729740103745999661157426E2L,
- a5 = 3.766956539107615557608581581190400021285E0L,
- b0 = 8.214973713960928795704317259806842490498E3L,
- b1 = 1.026343508841367384879065363925870888012E4L,
- b2 = 4.553337477045763320522762343132210919277E3L,
- b3 = 8.506975785032585797446253359230031874803E2L,
- b4 = 6.042447899703295436820744186992189445813E1L,
- /* b5 = 1.000000000000000000000000000000000000000E0 */
- tc = 1.4616321449683623412626595423257213284682E0L,
- tf = -1.2148629053584961146050602565082954242826E-1,/* double precision */
- /* tt = (tail of tf), i.e. tf + tt has extended precision. */
- tt = 3.3649914684731379602768989080467587736363E-18L,
- /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
- -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
- /* lgam (x + tc) = tf + tt + x g(x)/h(x)
- - 0.230003726999612341262659542325721328468 <= x
- <= 0.2699962730003876587373404576742786715318
- peak relative error 2.1e-21 */
- g0 = 3.645529916721223331888305293534095553827E-18L,
- g1 = 5.126654642791082497002594216163574795690E3L,
- g2 = 8.828603575854624811911631336122070070327E3L,
- g3 = 5.464186426932117031234820886525701595203E3L,
- g4 = 1.455427403530884193180776558102868592293E3L,
- g5 = 1.541735456969245924860307497029155838446E2L,
- g6 = 4.335498275274822298341872707453445815118E0L,
- h0 = 1.059584930106085509696730443974495979641E4L,
- h1 = 2.147921653490043010629481226937850618860E4L,
- h2 = 1.643014770044524804175197151958100656728E4L,
- h3 = 5.869021995186925517228323497501767586078E3L,
- h4 = 9.764244777714344488787381271643502742293E2L,
- h5 = 6.442485441570592541741092969581997002349E1L,
- /* h6 = 1.000000000000000000000000000000000000000E0 */
- /* lgam (x+1) = -0.5 x + x u(x)/v(x)
- -0.100006103515625 <= x <= 0.231639862060546875
- peak relative error 1.3e-21 */
- u0 = -8.886217500092090678492242071879342025627E1L,
- u1 = 6.840109978129177639438792958320783599310E2L,
- u2 = 2.042626104514127267855588786511809932433E3L,
- u3 = 1.911723903442667422201651063009856064275E3L,
- u4 = 7.447065275665887457628865263491667767695E2L,
- u5 = 1.132256494121790736268471016493103952637E2L,
- u6 = 4.484398885516614191003094714505960972894E0L,
- v0 = 1.150830924194461522996462401210374632929E3L,
- v1 = 3.399692260848747447377972081399737098610E3L,
- v2 = 3.786631705644460255229513563657226008015E3L,
- v3 = 1.966450123004478374557778781564114347876E3L,
- v4 = 4.741359068914069299837355438370682773122E2L,
- v5 = 4.508989649747184050907206782117647852364E1L,
- /* v6 = 1.000000000000000000000000000000000000000E0 */
- /* lgam (x+2) = .5 x + x s(x)/r(x)
- 0 <= x <= 1
- peak relative error 7.2e-22 */
- s0 = 1.454726263410661942989109455292824853344E6L,
- s1 = -3.901428390086348447890408306153378922752E6L,
- s2 = -6.573568698209374121847873064292963089438E6L,
- s3 = -3.319055881485044417245964508099095984643E6L,
- s4 = -7.094891568758439227560184618114707107977E5L,
- s5 = -6.263426646464505837422314539808112478303E4L,
- s6 = -1.684926520999477529949915657519454051529E3L,
- r0 = -1.883978160734303518163008696712983134698E7L,
- r1 = -2.815206082812062064902202753264922306830E7L,
- r2 = -1.600245495251915899081846093343626358398E7L,
- r3 = -4.310526301881305003489257052083370058799E6L,
- r4 = -5.563807682263923279438235987186184968542E5L,
- r5 = -3.027734654434169996032905158145259713083E4L,
- r6 = -4.501995652861105629217250715790764371267E2L,
- /* r6 = 1.000000000000000000000000000000000000000E0 */
- /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
- x >= 8
- Peak relative error 1.51e-21
- w0 = LS2PI - 0.5 */
- w0 = 4.189385332046727417803e-1L,
- w1 = 8.333333333333331447505E-2L,
- w2 = -2.777777777750349603440E-3L,
- w3 = 7.936507795855070755671E-4L,
- w4 = -5.952345851765688514613E-4L,
- w5 = 8.412723297322498080632E-4L,
- w6 = -1.880801938119376907179E-3L,
- w7 = 4.885026142432270781165E-3L;
- static const long double zero = 0.0L;
- static long double
- sin_pi(long double x)
- {
- long double y, z;
- int n, ix;
- u_int32_t se, i0, i1;
- GET_LDOUBLE_WORDS (se, i0, i1, x);
- ix = se & 0x7fff;
- ix = (ix << 16) | (i0 >> 16);
- if (ix < 0x3ffd8000) /* 0.25 */
- return sinl (pi * x);
- y = -x; /* x is assume negative */
- /*
- * argument reduction, make sure inexact flag not raised if input
- * is an integer
- */
- z = floorl (y);
- if (z != y)
- { /* inexact anyway */
- y *= 0.5;
- y = 2.0*(y - floorl(y)); /* y = |x| mod 2.0 */
- n = (int) (y*4.0);
- }
- else
- {
- if (ix >= 0x403f8000) /* 2^64 */
- {
- y = zero; n = 0; /* y must be even */
- }
- else
- {
- if (ix < 0x403e8000) /* 2^63 */
- z = y + two63; /* exact */
- GET_LDOUBLE_WORDS (se, i0, i1, z);
- n = i1 & 1;
- y = n;
- n <<= 2;
- }
- }
- switch (n)
- {
- case 0:
- y = sinl (pi * y);
- break;
- case 1:
- case 2:
- y = cosl (pi * (half - y));
- break;
- case 3:
- case 4:
- y = sinl (pi * (one - y));
- break;
- case 5:
- case 6:
- y = -cosl (pi * (y - 1.5));
- break;
- default:
- y = sinl (pi * (y - 2.0));
- break;
- }
- return -y;
- }
- long double
- lgammal_r(long double x, int *signgamp)
- {
- long double t, y, z, nadj, p, p1, p2, q, r, w;
- int i, ix;
- u_int32_t se, i0, i1;
- *signgamp = 1;
- GET_LDOUBLE_WORDS (se, i0, i1, x);
- ix = se & 0x7fff;
- if ((ix | i0 | i1) == 0)
- {
- if (se & 0x8000)
- *signgamp = -1;
- return one / fabsl (x);
- }
- ix = (ix << 16) | (i0 >> 16);
- /* purge off +-inf, NaN, +-0, and negative arguments */
- if (ix >= 0x7fff0000)
- return x * x;
- if (ix < 0x3fc08000) /* 2^-63 */
- { /* |x|<2**-63, return -log(|x|) */
- if (se & 0x8000)
- {
- *signgamp = -1;
- return -logl (-x);
- }
- else
- return -logl (x);
- }
- if (se & 0x8000)
- {
- t = sin_pi (x);
- if (t == zero)
- return one / fabsl (t); /* -integer */
- nadj = logl (pi / fabsl (t * x));
- if (t < zero)
- *signgamp = -1;
- x = -x;
- }
- /* purge off 1 and 2 */
- if ((((ix - 0x3fff8000) | i0 | i1) == 0)
- || (((ix - 0x40008000) | i0 | i1) == 0))
- r = 0;
- else if (ix < 0x40008000) /* 2.0 */
- {
- /* x < 2.0 */
- if (ix <= 0x3ffee666) /* 8.99993896484375e-1 */
- {
- /* lgamma(x) = lgamma(x+1) - log(x) */
- r = -logl (x);
- if (ix >= 0x3ffebb4a) /* 7.31597900390625e-1 */
- {
- y = x - one;
- i = 0;
- }
- else if (ix >= 0x3ffced33)/* 2.31639862060546875e-1 */
- {
- y = x - (tc - one);
- i = 1;
- }
- else
- {
- /* x < 0.23 */
- y = x;
- i = 2;
- }
- }
- else
- {
- r = zero;
- if (ix >= 0x3fffdda6) /* 1.73162841796875 */
- {
- /* [1.7316,2] */
- y = x - 2.0;
- i = 0;
- }
- else if (ix >= 0x3fff9da6)/* 1.23162841796875 */
- {
- /* [1.23,1.73] */
- y = x - tc;
- i = 1;
- }
- else
- {
- /* [0.9, 1.23] */
- y = x - one;
- i = 2;
- }
- }
- switch (i)
- {
- case 0:
- p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
- p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
- r += half * y + y * p1/p2;
- break;
- case 1:
- p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
- p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
- p = tt + y * p1/p2;
- r += (tf + p);
- break;
- case 2:
- p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
- p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
- r += (-half * y + p1 / p2);
- }
- }
- else if (ix < 0x40028000) /* 8.0 */
- {
- /* x < 8.0 */
- i = (int) x;
- t = zero;
- y = x - (double) i;
- p = y *
- (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
- q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
- r = half * y + p / q;
- z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
- switch (i)
- {
- case 7:
- z *= (y + 6.0); /* FALLTHRU */
- case 6:
- z *= (y + 5.0); /* FALLTHRU */
- case 5:
- z *= (y + 4.0); /* FALLTHRU */
- case 4:
- z *= (y + 3.0); /* FALLTHRU */
- case 3:
- z *= (y + 2.0); /* FALLTHRU */
- r += logl (z);
- break;
- }
- }
- else if (ix < 0x40418000) /* 2^66 */
- {
- /* 8.0 <= x < 2**66 */
- t = logl (x);
- z = one / x;
- y = z * z;
- w = w0 + z * (w1
- + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
- r = (x - half) * (t - one) + w;
- }
- else
- /* 2**66 <= x <= inf */
- r = x * (logl (x) - one);
- if (se & 0x8000)
- r = nadj - r;
- return r;
- }
|