123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- /* $OpenBSD: e_tgammal.c,v 1.4 2013/11/12 20:35:19 martynas Exp $ */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* tgammal.c
- *
- * Gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, tgammal();
- *
- * y = tgammal( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns gamma function of the argument. The result is correctly
- * signed. This variable is also filled in by the logarithmic gamma
- * function lgamma().
- *
- * Arguments |x| <= 13 are reduced by recurrence and the function
- * approximated by a rational function of degree 7/8 in the
- * interval (2,3). Large arguments are handled by Stirling's
- * formula. Large negative arguments are made positive using
- * a reflection formula.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -40,+40 10000 3.6e-19 7.9e-20
- * IEEE -1755,+1755 10000 4.8e-18 6.5e-19
- *
- * Accuracy for large arguments is dominated by error in powl().
- *
- */
- #include <float.h>
- #include <openlibm_math.h>
- #include "math_private.h"
- /*
- tgamma(x+2) = tgamma(x+2) P(x)/Q(x)
- 0 <= x <= 1
- Relative error
- n=7, d=8
- Peak error = 1.83e-20
- Relative error spread = 8.4e-23
- */
- static long double P[8] = {
- 4.212760487471622013093E-5L,
- 4.542931960608009155600E-4L,
- 4.092666828394035500949E-3L,
- 2.385363243461108252554E-2L,
- 1.113062816019361559013E-1L,
- 3.629515436640239168939E-1L,
- 8.378004301573126728826E-1L,
- 1.000000000000000000009E0L,
- };
- static long double Q[9] = {
- -1.397148517476170440917E-5L,
- 2.346584059160635244282E-4L,
- -1.237799246653152231188E-3L,
- -7.955933682494738320586E-4L,
- 2.773706565840072979165E-2L,
- -4.633887671244534213831E-2L,
- -2.243510905670329164562E-1L,
- 4.150160950588455434583E-1L,
- 9.999999999999999999908E-1L,
- };
- /*
- static long double P[] = {
- -3.01525602666895735709e0L,
- -3.25157411956062339893e1L,
- -2.92929976820724030353e2L,
- -1.70730828800510297666e3L,
- -7.96667499622741999770e3L,
- -2.59780216007146401957e4L,
- -5.99650230220855581642e4L,
- -7.15743521530849602425e4L
- };
- static long double Q[] = {
- 1.00000000000000000000e0L,
- -1.67955233807178858919e1L,
- 8.85946791747759881659e1L,
- 5.69440799097468430177e1L,
- -1.98526250512761318471e3L,
- 3.31667508019495079814e3L,
- 1.60577839621734713377e4L,
- -2.97045081369399940529e4L,
- -7.15743521530849602412e4L
- };
- */
- #define MAXGAML 1755.455L
- /*static const long double LOGPI = 1.14472988584940017414L;*/
- /* Stirling's formula for the gamma function
- tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
- z(x) = x
- 13 <= x <= 1024
- Relative error
- n=8, d=0
- Peak error = 9.44e-21
- Relative error spread = 8.8e-4
- */
- static long double STIR[9] = {
- 7.147391378143610789273E-4L,
- -2.363848809501759061727E-5L,
- -5.950237554056330156018E-4L,
- 6.989332260623193171870E-5L,
- 7.840334842744753003862E-4L,
- -2.294719747873185405699E-4L,
- -2.681327161876304418288E-3L,
- 3.472222222230075327854E-3L,
- 8.333333333333331800504E-2L,
- };
- #define MAXSTIR 1024.0L
- static const long double SQTPI = 2.50662827463100050242E0L;
- /* 1/tgamma(x) = z P(z)
- * z(x) = 1/x
- * 0 < x < 0.03125
- * Peak relative error 4.2e-23
- */
- static long double S[9] = {
- -1.193945051381510095614E-3L,
- 7.220599478036909672331E-3L,
- -9.622023360406271645744E-3L,
- -4.219773360705915470089E-2L,
- 1.665386113720805206758E-1L,
- -4.200263503403344054473E-2L,
- -6.558780715202540684668E-1L,
- 5.772156649015328608253E-1L,
- 1.000000000000000000000E0L,
- };
- /* 1/tgamma(-x) = z P(z)
- * z(x) = 1/x
- * 0 < x < 0.03125
- * Peak relative error 5.16e-23
- * Relative error spread = 2.5e-24
- */
- static long double SN[9] = {
- 1.133374167243894382010E-3L,
- 7.220837261893170325704E-3L,
- 9.621911155035976733706E-3L,
- -4.219773343731191721664E-2L,
- -1.665386113944413519335E-1L,
- -4.200263503402112910504E-2L,
- 6.558780715202536547116E-1L,
- 5.772156649015328608727E-1L,
- -1.000000000000000000000E0L,
- };
- static const long double PIL = 3.1415926535897932384626L;
- static long double stirf ( long double );
- /* Gamma function computed by Stirling's formula.
- */
- static long double stirf(long double x)
- {
- long double y, w, v;
- w = 1.0L/x;
- /* For large x, use rational coefficients from the analytical expansion. */
- if( x > 1024.0L )
- w = (((((6.97281375836585777429E-5L * w
- + 7.84039221720066627474E-4L) * w
- - 2.29472093621399176955E-4L) * w
- - 2.68132716049382716049E-3L) * w
- + 3.47222222222222222222E-3L) * w
- + 8.33333333333333333333E-2L) * w
- + 1.0L;
- else
- w = 1.0L + w * __polevll( w, STIR, 8 );
- y = expl(x);
- if( x > MAXSTIR )
- { /* Avoid overflow in pow() */
- v = powl( x, 0.5L * x - 0.25L );
- y = v * (v / y);
- }
- else
- {
- y = powl( x, x - 0.5L ) / y;
- }
- y = SQTPI * y * w;
- return( y );
- }
- long double
- tgammal(long double x)
- {
- long double p, q, z;
- int i;
- if( isnan(x) )
- return(NAN);
- if(x == INFINITY)
- return(INFINITY);
- if(x == -INFINITY)
- return(x - x);
- if( x == 0.0L )
- return( 1.0L / x );
- q = fabsl(x);
- if( q > 13.0L )
- {
- int sign = 1;
- if( q > MAXGAML )
- goto goverf;
- if( x < 0.0L )
- {
- p = floorl(q);
- if( p == q )
- return (x - x) / (x - x);
- i = p;
- if( (i & 1) == 0 )
- sign = -1;
- z = q - p;
- if( z > 0.5L )
- {
- p += 1.0L;
- z = q - p;
- }
- z = q * sinl( PIL * z );
- z = fabsl(z) * stirf(q);
- if( z <= PIL/LDBL_MAX )
- {
- goverf:
- return( sign * INFINITY);
- }
- z = PIL/z;
- }
- else
- {
- z = stirf(x);
- }
- return( sign * z );
- }
- z = 1.0L;
- while( x >= 3.0L )
- {
- x -= 1.0L;
- z *= x;
- }
- while( x < -0.03125L )
- {
- z /= x;
- x += 1.0L;
- }
- if( x <= 0.03125L )
- goto small;
- while( x < 2.0L )
- {
- z /= x;
- x += 1.0L;
- }
- if( x == 2.0L )
- return(z);
- x -= 2.0L;
- p = __polevll( x, P, 7 );
- q = __polevll( x, Q, 8 );
- z = z * p / q;
- return z;
- small:
- if( x == 0.0L )
- return (x - x) / (x - x);
- else
- {
- if( x < 0.0L )
- {
- x = -x;
- q = z / (x * __polevll( x, SN, 8 ));
- }
- else
- q = z / (x * __polevll( x, S, 8 ));
- }
- return q;
- }
|