123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- /* $OpenBSD: s_expm1l.c,v 1.2 2011/07/20 21:02:51 martynas Exp $ */
- /*
- * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
- /* expm1l.c
- *
- * Exponential function, minus 1
- * Long double precision
- *
- *
- * SYNOPSIS:
- *
- * long double x, y, expm1l();
- *
- * y = expm1l( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power, minus 1.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
- * in the basic range [-0.5 ln 2, 0.5 ln 2].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * expm1l overflow x > MAXLOG MAXNUM
- *
- */
- #include <openlibm_math.h>
- static const long double MAXLOGL = 1.1356523406294143949492E4L;
- /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
- -.5 ln 2 < x < .5 ln 2
- Theoretical peak relative error = 3.4e-22 */
- static const long double
- P0 = -1.586135578666346600772998894928250240826E4L,
- P1 = 2.642771505685952966904660652518429479531E3L,
- P2 = -3.423199068835684263987132888286791620673E2L,
- P3 = 1.800826371455042224581246202420972737840E1L,
- P4 = -5.238523121205561042771939008061958820811E-1L,
- Q0 = -9.516813471998079611319047060563358064497E4L,
- Q1 = 3.964866271411091674556850458227710004570E4L,
- Q2 = -7.207678383830091850230366618190187434796E3L,
- Q3 = 7.206038318724600171970199625081491823079E2L,
- Q4 = -4.002027679107076077238836622982900945173E1L,
- /* Q5 = 1.000000000000000000000000000000000000000E0 */
- /* C1 + C2 = ln 2 */
- C1 = 6.93145751953125E-1L,
- C2 = 1.428606820309417232121458176568075500134E-6L,
- /* ln 2^-65 */
- minarg = -4.5054566736396445112120088E1L;
- static const long double huge = 0x1p10000L;
- long double
- expm1l(long double x)
- {
- long double px, qx, xx;
- int k;
- /* Overflow. */
- if (x > MAXLOGL)
- return (huge*huge); /* overflow */
- if (x == 0.0)
- return x;
- /* Minimum value. */
- if (x < minarg)
- return -1.0L;
- xx = C1 + C2;
- /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
- px = floorl (0.5 + x / xx);
- k = px;
- /* remainder times ln 2 */
- x -= px * C1;
- x -= px * C2;
- /* Approximate exp(remainder ln 2). */
- px = (((( P4 * x
- + P3) * x
- + P2) * x
- + P1) * x
- + P0) * x;
- qx = (((( x
- + Q4) * x
- + Q3) * x
- + Q2) * x
- + Q1) * x
- + Q0;
- xx = x * x;
- qx = x + (0.5 * xx + xx * px / qx);
- /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
- We have qx = exp(remainder ln 2) - 1, so
- exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
- px = ldexpl(1.0L, k);
- x = px * qx + (px - 1.0);
- return x;
- }
|