s_expm1l.c 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. /* $OpenBSD: s_expm1l.c,v 1.2 2011/07/20 21:02:51 martynas Exp $ */
  2. /*
  3. * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
  4. *
  5. * Permission to use, copy, modify, and distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. /* expm1l.c
  18. *
  19. * Exponential function, minus 1
  20. * Long double precision
  21. *
  22. *
  23. * SYNOPSIS:
  24. *
  25. * long double x, y, expm1l();
  26. *
  27. * y = expm1l( x );
  28. *
  29. *
  30. *
  31. * DESCRIPTION:
  32. *
  33. * Returns e (2.71828...) raised to the x power, minus 1.
  34. *
  35. * Range reduction is accomplished by separating the argument
  36. * into an integer k and fraction f such that
  37. *
  38. * x k f
  39. * e = 2 e.
  40. *
  41. * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
  42. * in the basic range [-0.5 ln 2, 0.5 ln 2].
  43. *
  44. *
  45. * ACCURACY:
  46. *
  47. * Relative error:
  48. * arithmetic domain # trials peak rms
  49. * IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20
  50. *
  51. * ERROR MESSAGES:
  52. *
  53. * message condition value returned
  54. * expm1l overflow x > MAXLOG MAXNUM
  55. *
  56. */
  57. #include <openlibm_math.h>
  58. static const long double MAXLOGL = 1.1356523406294143949492E4L;
  59. /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
  60. -.5 ln 2 < x < .5 ln 2
  61. Theoretical peak relative error = 3.4e-22 */
  62. static const long double
  63. P0 = -1.586135578666346600772998894928250240826E4L,
  64. P1 = 2.642771505685952966904660652518429479531E3L,
  65. P2 = -3.423199068835684263987132888286791620673E2L,
  66. P3 = 1.800826371455042224581246202420972737840E1L,
  67. P4 = -5.238523121205561042771939008061958820811E-1L,
  68. Q0 = -9.516813471998079611319047060563358064497E4L,
  69. Q1 = 3.964866271411091674556850458227710004570E4L,
  70. Q2 = -7.207678383830091850230366618190187434796E3L,
  71. Q3 = 7.206038318724600171970199625081491823079E2L,
  72. Q4 = -4.002027679107076077238836622982900945173E1L,
  73. /* Q5 = 1.000000000000000000000000000000000000000E0 */
  74. /* C1 + C2 = ln 2 */
  75. C1 = 6.93145751953125E-1L,
  76. C2 = 1.428606820309417232121458176568075500134E-6L,
  77. /* ln 2^-65 */
  78. minarg = -4.5054566736396445112120088E1L;
  79. static const long double huge = 0x1p10000L;
  80. long double
  81. expm1l(long double x)
  82. {
  83. long double px, qx, xx;
  84. int k;
  85. /* Overflow. */
  86. if (x > MAXLOGL)
  87. return (huge*huge); /* overflow */
  88. if (x == 0.0)
  89. return x;
  90. /* Minimum value. */
  91. if (x < minarg)
  92. return -1.0L;
  93. xx = C1 + C2;
  94. /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
  95. px = floorl (0.5 + x / xx);
  96. k = px;
  97. /* remainder times ln 2 */
  98. x -= px * C1;
  99. x -= px * C2;
  100. /* Approximate exp(remainder ln 2). */
  101. px = (((( P4 * x
  102. + P3) * x
  103. + P2) * x
  104. + P1) * x
  105. + P0) * x;
  106. qx = (((( x
  107. + Q4) * x
  108. + Q3) * x
  109. + Q2) * x
  110. + Q1) * x
  111. + Q0;
  112. xx = x * x;
  113. qx = x + (0.5 * xx + xx * px / qx);
  114. /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
  115. We have qx = exp(remainder ln 2) - 1, so
  116. exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */
  117. px = ldexpl(1.0L, k);
  118. x = px * qx + (px - 1.0);
  119. return x;
  120. }