b_tgamma.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. /*-
  2. * Copyright (c) 1992, 1993
  3. * The Regents of the University of California. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. * 3. Neither the name of the University nor the names of its contributors
  14. * may be used to endorse or promote products derived from this software
  15. * without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  18. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  21. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  22. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  23. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  24. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  25. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  26. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  27. * SUCH DAMAGE.
  28. */
  29. /* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */
  30. #include "openlibm_compat.h"
  31. //__FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.10 2008/02/22 02:26:51 das Exp $");
  32. /*
  33. * This code by P. McIlroy, Oct 1992;
  34. *
  35. * The financial support of UUNET Communications Services is greatfully
  36. * acknowledged.
  37. */
  38. #include <openlibm_math.h>
  39. #include "mathimpl.h"
  40. /* METHOD:
  41. * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
  42. * At negative integers, return NaN and raise invalid.
  43. *
  44. * x < 6.5:
  45. * Use argument reduction G(x+1) = xG(x) to reach the
  46. * range [1.066124,2.066124]. Use a rational
  47. * approximation centered at the minimum (x0+1) to
  48. * ensure monotonicity.
  49. *
  50. * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
  51. * adjusted for equal-ripples:
  52. *
  53. * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
  54. *
  55. * Keep extra precision in multiplying (x-.5)(log(x)-1), to
  56. * avoid premature round-off.
  57. *
  58. * Special values:
  59. * -Inf: return NaN and raise invalid;
  60. * negative integer: return NaN and raise invalid;
  61. * other x ~< 177.79: return +-0 and raise underflow;
  62. * +-0: return +-Inf and raise divide-by-zero;
  63. * finite x ~> 171.63: return +Inf and raise overflow;
  64. * +Inf: return +Inf;
  65. * NaN: return NaN.
  66. *
  67. * Accuracy: tgamma(x) is accurate to within
  68. * x > 0: error provably < 0.9ulp.
  69. * Maximum observed in 1,000,000 trials was .87ulp.
  70. * x < 0:
  71. * Maximum observed error < 4ulp in 1,000,000 trials.
  72. */
  73. static double neg_gam(double);
  74. static double small_gam(double);
  75. static double smaller_gam(double);
  76. static struct Double large_gam(double);
  77. static struct Double ratfun_gam(double, double);
  78. /*
  79. * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
  80. * [1.066.., 2.066..] accurate to 4.25e-19.
  81. */
  82. #define LEFT -.3955078125 /* left boundary for rat. approx */
  83. #define x0 .461632144968362356785 /* xmin - 1 */
  84. #define a0_hi 0.88560319441088874992
  85. #define a0_lo -.00000000000000004996427036469019695
  86. #define P0 6.21389571821820863029017800727e-01
  87. #define P1 2.65757198651533466104979197553e-01
  88. #define P2 5.53859446429917461063308081748e-03
  89. #define P3 1.38456698304096573887145282811e-03
  90. #define P4 2.40659950032711365819348969808e-03
  91. #define Q0 1.45019531250000000000000000000e+00
  92. #define Q1 1.06258521948016171343454061571e+00
  93. #define Q2 -2.07474561943859936441469926649e-01
  94. #define Q3 -1.46734131782005422506287573015e-01
  95. #define Q4 3.07878176156175520361557573779e-02
  96. #define Q5 5.12449347980666221336054633184e-03
  97. #define Q6 -1.76012741431666995019222898833e-03
  98. #define Q7 9.35021023573788935372153030556e-05
  99. #define Q8 6.13275507472443958924745652239e-06
  100. /*
  101. * Constants for large x approximation (x in [6, Inf])
  102. * (Accurate to 2.8*10^-19 absolute)
  103. */
  104. #define lns2pi_hi 0.418945312500000
  105. #define lns2pi_lo -.000006779295327258219670263595
  106. #define Pa0 8.33333333333333148296162562474e-02
  107. #define Pa1 -2.77777777774548123579378966497e-03
  108. #define Pa2 7.93650778754435631476282786423e-04
  109. #define Pa3 -5.95235082566672847950717262222e-04
  110. #define Pa4 8.41428560346653702135821806252e-04
  111. #define Pa5 -1.89773526463879200348872089421e-03
  112. #define Pa6 5.69394463439411649408050664078e-03
  113. #define Pa7 -1.44705562421428915453880392761e-02
  114. static const double zero = 0., one = 1.0, tiny = 1e-300;
  115. DLLEXPORT double
  116. tgamma(x)
  117. double x;
  118. {
  119. struct Double u;
  120. if (x >= 6) {
  121. if(x > 171.63)
  122. return (x / zero);
  123. u = large_gam(x);
  124. return(__exp__D(u.a, u.b));
  125. } else if (x >= 1.0 + LEFT + x0)
  126. return (small_gam(x));
  127. else if (x > 1.e-17)
  128. return (smaller_gam(x));
  129. else if (x > -1.e-17) {
  130. if (x != 0.0)
  131. u.a = one - tiny; /* raise inexact */
  132. return (one/x);
  133. } else if (!isfinite(x))
  134. return (x - x); /* x is NaN or -Inf */
  135. else
  136. return (neg_gam(x));
  137. }
  138. /*
  139. * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
  140. */
  141. static struct Double
  142. large_gam(x)
  143. double x;
  144. {
  145. double z, p;
  146. struct Double t, u, v;
  147. z = one/(x*x);
  148. p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
  149. p = p/x;
  150. u = __log__D(x);
  151. u.a -= one;
  152. v.a = (x -= .5);
  153. TRUNC(v.a);
  154. v.b = x - v.a;
  155. t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
  156. t.b = v.b*u.a + x*u.b;
  157. /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
  158. t.b += lns2pi_lo; t.b += p;
  159. u.a = lns2pi_hi + t.b; u.a += t.a;
  160. u.b = t.a - u.a;
  161. u.b += lns2pi_hi; u.b += t.b;
  162. return (u);
  163. }
  164. /*
  165. * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
  166. * It also has correct monotonicity.
  167. */
  168. static double
  169. small_gam(x)
  170. double x;
  171. {
  172. double y, ym1, t;
  173. struct Double yy, r;
  174. y = x - one;
  175. ym1 = y - one;
  176. if (y <= 1.0 + (LEFT + x0)) {
  177. yy = ratfun_gam(y - x0, 0);
  178. return (yy.a + yy.b);
  179. }
  180. r.a = y;
  181. TRUNC(r.a);
  182. yy.a = r.a - one;
  183. y = ym1;
  184. yy.b = r.b = y - yy.a;
  185. /* Argument reduction: G(x+1) = x*G(x) */
  186. for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
  187. t = r.a*yy.a;
  188. r.b = r.a*yy.b + y*r.b;
  189. r.a = t;
  190. TRUNC(r.a);
  191. r.b += (t - r.a);
  192. }
  193. /* Return r*tgamma(y). */
  194. yy = ratfun_gam(y - x0, 0);
  195. y = r.b*(yy.a + yy.b) + r.a*yy.b;
  196. y += yy.a*r.a;
  197. return (y);
  198. }
  199. /*
  200. * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
  201. */
  202. static double
  203. smaller_gam(x)
  204. double x;
  205. {
  206. double t, d;
  207. struct Double r, xx;
  208. if (x < x0 + LEFT) {
  209. t = x, TRUNC(t);
  210. d = (t+x)*(x-t);
  211. t *= t;
  212. xx.a = (t + x), TRUNC(xx.a);
  213. xx.b = x - xx.a; xx.b += t; xx.b += d;
  214. t = (one-x0); t += x;
  215. d = (one-x0); d -= t; d += x;
  216. x = xx.a + xx.b;
  217. } else {
  218. xx.a = x, TRUNC(xx.a);
  219. xx.b = x - xx.a;
  220. t = x - x0;
  221. d = (-x0 -t); d += x;
  222. }
  223. r = ratfun_gam(t, d);
  224. d = r.a/x, TRUNC(d);
  225. r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
  226. return (d + r.a/x);
  227. }
  228. /*
  229. * returns (z+c)^2 * P(z)/Q(z) + a0
  230. */
  231. static struct Double
  232. ratfun_gam(z, c)
  233. double z, c;
  234. {
  235. double p, q;
  236. struct Double r, t;
  237. q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
  238. p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
  239. /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
  240. p = p/q;
  241. t.a = z, TRUNC(t.a); /* t ~= z + c */
  242. t.b = (z - t.a) + c;
  243. t.b *= (t.a + z);
  244. q = (t.a *= t.a); /* t = (z+c)^2 */
  245. TRUNC(t.a);
  246. t.b += (q - t.a);
  247. r.a = p, TRUNC(r.a); /* r = P/Q */
  248. r.b = p - r.a;
  249. t.b = t.b*p + t.a*r.b + a0_lo;
  250. t.a *= r.a; /* t = (z+c)^2*(P/Q) */
  251. r.a = t.a + a0_hi, TRUNC(r.a);
  252. r.b = ((a0_hi-r.a) + t.a) + t.b;
  253. return (r); /* r = a0 + t */
  254. }
  255. static double
  256. neg_gam(x)
  257. double x;
  258. {
  259. int sgn = 1;
  260. struct Double lg, lsine;
  261. double y, z;
  262. y = ceil(x);
  263. if (y == x) /* Negative integer. */
  264. return ((x - x) / zero);
  265. z = y - x;
  266. if (z > 0.5)
  267. z = one - z;
  268. y = 0.5 * y;
  269. if (y == ceil(y))
  270. sgn = -1;
  271. if (z < .25)
  272. z = sin(M_PI*z);
  273. else
  274. z = cos(M_PI*(0.5-z));
  275. /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
  276. if (x < -170) {
  277. if (x < -190)
  278. return ((double)sgn*tiny*tiny);
  279. y = one - x; /* exact: 128 < |x| < 255 */
  280. lg = large_gam(y);
  281. lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
  282. lg.a -= lsine.a; /* exact (opposite signs) */
  283. lg.b -= lsine.b;
  284. y = -(lg.a + lg.b);
  285. z = (y + lg.a) + lg.b;
  286. y = __exp__D(y, z);
  287. if (sgn < 0) y = -y;
  288. return (y);
  289. }
  290. y = one-x;
  291. if (one-y == x)
  292. y = tgamma(y);
  293. else /* 1-x is inexact */
  294. y = -x*tgamma(-x);
  295. if (sgn < 0) y = -y;
  296. return (M_PI / (y*z));
  297. }