123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- /* @(#)e_hypot.c 5.1 93/09/24 */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- /* hypotl(x,y)
- *
- * Method :
- * If (assume round-to-nearest) z=x*x+y*y
- * has error less than sqrt(2)/2 ulp, than
- * sqrt(z) has error less than 1 ulp (exercise).
- *
- * So, compute sqrt(x*x+y*y) with some care as
- * follows to get the error below 1 ulp:
- *
- * Assume x>y>0;
- * (if possible, set rounding to round-to-nearest)
- * 1. if x > 2y use
- * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
- * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
- * 2. if x <= 2y use
- * t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))
- * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
- * yy1= y with lower 32 bits chopped, y2 = y-yy1.
- *
- * NOTE: scaling may be necessary if some argument is too
- * large or too tiny
- *
- * Special cases:
- * hypot(x,y) is INF if x or y is +INF or -INF; else
- * hypot(x,y) is NAN if x or y is NAN.
- *
- * Accuracy:
- * hypot(x,y) returns sqrt(x^2+y^2) with error less
- * than 1 ulps (units in the last place)
- */
- #include <openlibm_math.h>
- #include "math_private.h"
- #include "math_private_openbsd.h"
- long double
- hypotl(long double x, long double y)
- {
- long double a,b,t1,t2,yy1,y2,w;
- u_int32_t j,k,ea,eb;
- GET_LDOUBLE_EXP(ea,x);
- ea &= 0x7fff;
- GET_LDOUBLE_EXP(eb,y);
- eb &= 0x7fff;
- if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;}
- SET_LDOUBLE_EXP(a,ea); /* a <- |a| */
- SET_LDOUBLE_EXP(b,eb); /* b <- |b| */
- if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */
- k=0;
- if(ea > 0x5f3f) { /* a>2**8000 */
- if(ea == 0x7fff) { /* Inf or NaN */
- u_int32_t es,high,low;
- w = a+b; /* for sNaN */
- GET_LDOUBLE_WORDS(es,high,low,a);
- if(((high&0x7fffffff)|low)==0) w = a;
- GET_LDOUBLE_WORDS(es,high,low,b);
- if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;
- return w;
- }
- /* scale a and b by 2**-9600 */
- ea -= 0x2580; eb -= 0x2580; k += 9600;
- SET_LDOUBLE_EXP(a,ea);
- SET_LDOUBLE_EXP(b,eb);
- }
- if(eb < 0x20bf) { /* b < 2**-8000 */
- if(eb == 0) { /* subnormal b or 0 */
- u_int32_t es,high,low;
- GET_LDOUBLE_WORDS(es,high,low,b);
- if((high|low)==0) return a;
- SET_LDOUBLE_WORDS(t1, 0x7ffd, 0, 0); /* t1=2^16382 */
- b *= t1;
- a *= t1;
- k -= 16382;
- } else { /* scale a and b by 2^9600 */
- ea += 0x2580; /* a *= 2^9600 */
- eb += 0x2580; /* b *= 2^9600 */
- k -= 9600;
- SET_LDOUBLE_EXP(a,ea);
- SET_LDOUBLE_EXP(b,eb);
- }
- }
- /* medium size a and b */
- w = a-b;
- if (w>b) {
- u_int32_t high;
- GET_LDOUBLE_MSW(high,a);
- SET_LDOUBLE_WORDS(t1,ea,high,0);
- t2 = a-t1;
- w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
- } else {
- u_int32_t high;
- GET_LDOUBLE_MSW(high,b);
- a = a+a;
- SET_LDOUBLE_WORDS(yy1,eb,high,0);
- y2 = b - yy1;
- GET_LDOUBLE_MSW(high,a);
- SET_LDOUBLE_WORDS(t1,ea+1,high,0);
- t2 = a - t1;
- w = sqrtl(t1*yy1-(w*(-w)-(t1*y2+t2*b)));
- }
- if(k!=0) {
- u_int32_t es;
- t1 = 1.0;
- GET_LDOUBLE_EXP(es,t1);
- SET_LDOUBLE_EXP(t1,es+k);
- return t1*w;
- } else return w;
- }
|