123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- /*-
- * Copyright (c) 2009-2013 Steven G. Kargl
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice unmodified, this list of conditions, and the following
- * disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * Optimized by Bruce D. Evans.
- */
- #include <openlibm_compat.h>
- __FBSDID("$FreeBSD$");
- /**
- * Compute the exponential of x for Intel 80-bit format. This is based on:
- *
- * PTP Tang, "Table-driven implementation of the exponential function
- * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
- * 144-157 (1989).
- *
- * where the 32 table entries have been expanded to INTERVALS (see below).
- */
- #include <float.h>
- #ifdef __i386__
- #include <ieeefp.h>
- #endif
- #include "fpmath.h"
- #include <openlibm_math.h>
- #include "math_private.h"
- #include "k_expl.h"
- /* XXX Prevent compilers from erroneously constant folding these: */
- static const volatile long double
- huge = 0x1p10000L,
- tiny = 0x1p-10000L;
- static const long double
- twom10000 = 0x1p-10000L;
- static const union IEEEl2bits
- /* log(2**16384 - 0.5) rounded towards zero: */
- /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
- o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
- #define o_threshold (o_thresholdu.e)
- /* log(2**(-16381-64-1)) rounded towards zero: */
- u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
- #define u_threshold (u_thresholdu.e)
- long double
- expl(long double x)
- {
- union IEEEl2bits u;
- long double hi, lo, t, twopk;
- int k;
- uint16_t hx, ix;
- DOPRINT_START(&x);
- /* Filter out exceptional cases. */
- u.e = x;
- hx = u.xbits.expsign;
- ix = hx & 0x7fff;
- if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
- if (ix == BIAS + LDBL_MAX_EXP) {
- if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
- RETURNP(-1 / x);
- RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
- }
- if (x > o_threshold)
- RETURNP(huge * huge);
- if (x < u_threshold)
- RETURNP(tiny * tiny);
- } else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
- RETURN2P(1, x); /* 1 with inexact iff x != 0 */
- }
- ENTERI();
- twopk = 1;
- __k_expl(x, &hi, &lo, &k);
- t = SUM2P(hi, lo);
- /* Scale by 2**k. */
- if (k >= LDBL_MIN_EXP) {
- if (k == LDBL_MAX_EXP)
- RETURNI(t * 2 * 0x1p16383L);
- SET_LDBL_EXPSIGN(twopk, BIAS + k);
- RETURNI(t * twopk);
- } else {
- SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
- RETURNI(t * twopk * twom10000);
- }
- }
- /**
- * Compute expm1l(x) for Intel 80-bit format. This is based on:
- *
- * PTP Tang, "Table-driven implementation of the Expm1 function
- * in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
- * 211-222 (1992).
- */
- /*
- * Our T1 and T2 are chosen to be approximately the points where method
- * A and method B have the same accuracy. Tang's T1 and T2 are the
- * points where method A's accuracy changes by a full bit. For Tang,
- * this drop in accuracy makes method A immediately less accurate than
- * method B, but our larger INTERVALS makes method A 2 bits more
- * accurate so it remains the most accurate method significantly
- * closer to the origin despite losing the full bit in our extended
- * range for it.
- */
- static const double
- T1 = -0.1659, /* ~-30.625/128 * log(2) */
- T2 = 0.1659; /* ~30.625/128 * log(2) */
- /*
- * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
- * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
- *
- * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
- * but unlike for ld128 we can't drop any terms.
- */
- static const union IEEEl2bits
- B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
- B4 = LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
- static const double
- B5 = 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
- B6 = 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
- B7 = 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
- B8 = 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
- B9 = 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
- B10 = 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
- B11 = 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
- B12 = 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
- long double
- expm1l(long double x)
- {
- union IEEEl2bits u, v;
- long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
- long double x_lo, x2, z;
- long double x4;
- int k, n, n2;
- uint16_t hx, ix;
- DOPRINT_START(&x);
- /* Filter out exceptional cases. */
- u.e = x;
- hx = u.xbits.expsign;
- ix = hx & 0x7fff;
- if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
- if (ix == BIAS + LDBL_MAX_EXP) {
- if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
- RETURNP(-1 / x - 1);
- RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
- }
- if (x > o_threshold)
- RETURNP(huge * huge);
- /*
- * expm1l() never underflows, but it must avoid
- * unrepresentable large negative exponents. We used a
- * much smaller threshold for large |x| above than in
- * expl() so as to handle not so large negative exponents
- * in the same way as large ones here.
- */
- if (hx & 0x8000) /* x <= -64 */
- RETURN2P(tiny, -1); /* good for x < -65ln2 - eps */
- }
- ENTERI();
- if (T1 < x && x < T2) {
- if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
- /* x (rounded) with inexact if x != 0: */
- RETURNPI(x == 0 ? x :
- (0x1p100 * x + fabsl(x)) * 0x1p-100);
- }
- x2 = x * x;
- x4 = x2 * x2;
- q = x4 * (x2 * (x4 *
- /*
- * XXX the number of terms is no longer good for
- * pairwise grouping of all except B3, and the
- * grouping is no longer from highest down.
- */
- (x2 * B12 + (x * B11 + B10)) +
- (x2 * (x * B9 + B8) + (x * B7 + B6))) +
- (x * B5 + B4.e)) + x2 * x * B3.e;
- x_hi = (float)x;
- x_lo = x - x_hi;
- hx2_hi = x_hi * x_hi / 2;
- hx2_lo = x_lo * (x + x_hi) / 2;
- if (ix >= BIAS - 7)
- RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
- else
- RETURN2PI(x, hx2_lo + q + hx2_hi);
- }
- /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
- /* Use a specialized rint() to get fn. Assume round-to-nearest. */
- fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
- #if defined(HAVE_EFFICIENT_IRINTL)
- n = irintl(fn);
- #elif defined(HAVE_EFFICIENT_IRINT)
- n = irint(fn);
- #else
- n = (int)fn;
- #endif
- n2 = (unsigned)n % INTERVALS;
- k = n >> LOG2_INTERVALS;
- r1 = x - fn * L1;
- r2 = fn * -L2;
- r = r1 + r2;
- /* Prepare scale factor. */
- v.e = 1;
- v.xbits.expsign = BIAS + k;
- twopk = v.e;
- /*
- * Evaluate lower terms of
- * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
- */
- z = r * r;
- q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
- t = (long double)tbl[n2].lo + tbl[n2].hi;
- if (k == 0) {
- t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
- tbl[n2].hi * r1);
- RETURNI(t);
- }
- if (k == -1) {
- t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
- tbl[n2].hi * r1);
- RETURNI(t / 2);
- }
- if (k < -7) {
- t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
- RETURNI(t * twopk - 1);
- }
- if (k > 2 * LDBL_MANT_DIG - 1) {
- t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
- if (k == LDBL_MAX_EXP)
- RETURNI(t * 2 * 0x1p16383L - 1);
- RETURNI(t * twopk - 1);
- }
- v.xbits.expsign = BIAS - k;
- twomk = v.e;
- if (k > LDBL_MANT_DIG - 1)
- t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
- else
- t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
- RETURNI(t * twopk);
- }
|