ipi.rs 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. use crate::platform::PLATFORM;
  2. use crate::riscv_spec::{current_hartid, stimecmp};
  3. use crate::sbi::extensions::{hart_extension_probe, Extension};
  4. use crate::sbi::hsm::remote_hsm;
  5. use crate::sbi::rfence;
  6. use crate::sbi::trap;
  7. use crate::sbi::trap_stack::ROOT_STACK;
  8. use core::sync::atomic::Ordering::Relaxed;
  9. use rustsbi::{HartMask, SbiRet};
  10. use spin::Mutex;
  11. /// IPI type for supervisor software interrupt.
  12. pub(crate) const IPI_TYPE_SSOFT: u8 = 1 << 0;
  13. /// IPI type for memory fence operations.
  14. pub(crate) const IPI_TYPE_FENCE: u8 = 1 << 1;
  15. /// Trait defining interface for inter-processor interrupt device
  16. #[allow(unused)]
  17. pub trait IpiDevice {
  18. /// Read machine time value.
  19. fn read_mtime(&self) -> u64;
  20. /// Write machine time value.
  21. fn write_mtime(&self, val: u64);
  22. /// Read machine timer compare value for given hart.
  23. fn read_mtimecmp(&self, hart_idx: usize) -> u64;
  24. /// Write machine timer compare value for given hart.
  25. fn write_mtimecmp(&self, hart_idx: usize, val: u64);
  26. /// Read machine software interrupt pending bit for given hart.
  27. fn read_msip(&self, hart_idx: usize) -> bool;
  28. /// Set machine software interrupt pending bit for given hart.
  29. fn set_msip(&self, hart_idx: usize);
  30. /// Clear machine software interrupt pending bit for given hart.
  31. fn clear_msip(&self, hart_idx: usize);
  32. }
  33. /// SBI IPI implementation.
  34. pub struct SbiIpi<T: IpiDevice> {
  35. /// Reference to atomic pointer to IPI device.
  36. pub ipi_dev: Mutex<T>,
  37. /// Maximum hart ID in the system
  38. pub max_hart_id: usize,
  39. }
  40. impl<T: IpiDevice> rustsbi::Timer for SbiIpi<T> {
  41. /// Set timer value for current hart.
  42. #[inline]
  43. fn set_timer(&self, stime_value: u64) {
  44. let hart_id = current_hartid();
  45. let uses_sstc = hart_extension_probe(hart_id, Extension::Sstc);
  46. // Set timer value based on extension support.
  47. if uses_sstc {
  48. stimecmp::set(stime_value);
  49. } else {
  50. self.write_mtimecmp(hart_id, stime_value);
  51. unsafe {
  52. riscv::register::mip::clear_stimer();
  53. }
  54. }
  55. // Enable machine timer interrupt.
  56. unsafe {
  57. riscv::register::mie::set_mtimer();
  58. }
  59. }
  60. }
  61. impl<T: IpiDevice> rustsbi::Ipi for SbiIpi<T> {
  62. /// Send IPI to specified harts.
  63. #[inline]
  64. fn send_ipi(&self, hart_mask: rustsbi::HartMask) -> SbiRet {
  65. let mut hart_mask = hart_mask;
  66. for hart_id in 0..=self.max_hart_id {
  67. if !hart_mask.has_bit(hart_id) {
  68. continue;
  69. }
  70. // There are 2 situation to return invalid_param:
  71. // 1. We can not get hsm, which usually means this hart_id is bigger than MAX_HART_ID.
  72. // 2. BOARD hasn't init or this hart_id is not enabled by device tree.
  73. // In the next loop, we'll assume that all of above situation will not happened and
  74. // directly send ipi.
  75. let Some(hsm) = remote_hsm(hart_id) else {
  76. return SbiRet::invalid_param();
  77. };
  78. if unsafe {
  79. PLATFORM
  80. .info
  81. .cpu_enabled
  82. .is_none_or(|list| list.get(hart_id).is_none_or(|res| !(*res)))
  83. } {
  84. return SbiRet::invalid_param();
  85. }
  86. if !hsm.allow_ipi() {
  87. hart_mask = hart_mask_clear(hart_mask, hart_id);
  88. }
  89. }
  90. for hart_id in 0..=self.max_hart_id {
  91. if !hart_mask.has_bit(hart_id) {
  92. continue;
  93. }
  94. if set_ipi_type(hart_id, IPI_TYPE_SSOFT) == 0 {
  95. self.set_msip(hart_id);
  96. }
  97. }
  98. SbiRet::success(0)
  99. }
  100. }
  101. impl<T: IpiDevice> SbiIpi<T> {
  102. /// Create new SBI IPI instance.
  103. #[inline]
  104. pub fn new(ipi_dev: Mutex<T>, max_hart_id: usize) -> Self {
  105. Self {
  106. ipi_dev,
  107. max_hart_id,
  108. }
  109. }
  110. /// Send IPI for remote fence operation.
  111. pub fn send_ipi_by_fence(
  112. &self,
  113. hart_mask: rustsbi::HartMask,
  114. ctx: rfence::RFenceContext,
  115. ) -> SbiRet {
  116. let current_hart = current_hartid();
  117. let mut hart_mask = hart_mask;
  118. for hart_id in 0..=self.max_hart_id {
  119. if !hart_mask.has_bit(hart_id) {
  120. continue;
  121. }
  122. // There are 2 situation to return invalid_param:
  123. // 1. We can not get hsm, which usually means this hart_id is bigger than MAX_HART_ID.
  124. // 2. BOARD hasn't init or this hart_id is not enabled by device tree.
  125. // In the next loop, we'll assume that all of above situation will not happened and
  126. // directly send ipi.
  127. let Some(hsm) = remote_hsm(hart_id) else {
  128. return SbiRet::invalid_param();
  129. };
  130. if unsafe {
  131. PLATFORM
  132. .info
  133. .cpu_enabled
  134. .is_none_or(|list| list.get(hart_id).is_none_or(|res| !(*res)))
  135. } {
  136. return SbiRet::invalid_param();
  137. }
  138. if !hsm.allow_ipi() {
  139. hart_mask = hart_mask_clear(hart_mask, hart_id);
  140. }
  141. }
  142. // Send fence operations to target harts
  143. for hart_id in 0..=self.max_hart_id {
  144. if !hart_mask.has_bit(hart_id) {
  145. continue;
  146. }
  147. if let Some(remote) = rfence::remote_rfence(hart_id) {
  148. if let Some(local) = rfence::local_rfence() {
  149. local.add();
  150. }
  151. remote.set(ctx);
  152. if hart_id != current_hart {
  153. let old_ipi_type = set_ipi_type(hart_id, IPI_TYPE_FENCE);
  154. if old_ipi_type == 0 {
  155. self.set_msip(hart_id);
  156. }
  157. }
  158. }
  159. }
  160. // Wait for all fence operations to complete
  161. while !rfence::local_rfence().unwrap().is_sync() {
  162. trap::rfence_single_handler();
  163. }
  164. SbiRet::success(0)
  165. }
  166. /// Get lower 32 bits of machine time.
  167. #[inline]
  168. pub fn get_time(&self) -> usize {
  169. self.ipi_dev.lock().read_mtime() as usize
  170. }
  171. /// Get upper 32 bits of machine time.
  172. #[inline]
  173. pub fn get_timeh(&self) -> usize {
  174. (self.ipi_dev.lock().read_mtime() >> 32) as usize
  175. }
  176. /// Set machine software interrupt pending for hart.
  177. #[inline]
  178. pub fn set_msip(&self, hart_idx: usize) {
  179. self.ipi_dev.lock().set_msip(hart_idx);
  180. }
  181. /// Clear machine software interrupt pending for hart.
  182. #[inline]
  183. pub fn clear_msip(&self, hart_idx: usize) {
  184. self.ipi_dev.lock().clear_msip(hart_idx);
  185. }
  186. /// Write machine timer compare value for hart.
  187. #[inline]
  188. pub fn write_mtimecmp(&self, hart_idx: usize, val: u64) {
  189. self.ipi_dev.lock().write_mtimecmp(hart_idx, val);
  190. }
  191. /// Clear all pending interrupts for current hart.
  192. #[inline]
  193. pub fn clear(&self) {
  194. let hart_id = current_hartid();
  195. // Load ipi_dev once instead of twice
  196. let ipi_dev = self.ipi_dev.lock();
  197. ipi_dev.clear_msip(hart_id);
  198. ipi_dev.write_mtimecmp(hart_id, u64::MAX);
  199. }
  200. }
  201. /// Set IPI type for specified hart.
  202. pub fn set_ipi_type(hart_id: usize, event_id: u8) -> u8 {
  203. unsafe {
  204. ROOT_STACK
  205. .get_unchecked_mut(hart_id)
  206. .hart_context()
  207. .ipi_type
  208. .fetch_or(event_id, Relaxed)
  209. }
  210. }
  211. /// Get and reset IPI type for current hart.
  212. pub fn get_and_reset_ipi_type() -> u8 {
  213. unsafe {
  214. ROOT_STACK
  215. .get_unchecked_mut(current_hartid())
  216. .hart_context()
  217. .ipi_type
  218. .swap(0, Relaxed)
  219. }
  220. }
  221. /// Clear machine software interrupt pending for current hart.
  222. #[inline]
  223. pub fn clear_msip() {
  224. match unsafe { PLATFORM.sbi.ipi.as_ref() } {
  225. Some(ipi) => ipi.clear_msip(current_hartid()),
  226. None => error!("SBI or IPI device not initialized"),
  227. }
  228. }
  229. /// Clear machine timer interrupt for current hart.
  230. #[inline]
  231. pub fn clear_mtime() {
  232. match unsafe { PLATFORM.sbi.ipi.as_ref() } {
  233. Some(ipi) => ipi.write_mtimecmp(current_hartid(), u64::MAX),
  234. None => error!("SBI or IPI device not initialized"),
  235. }
  236. }
  237. /// Clear all pending interrupts for current hart.
  238. #[inline]
  239. pub fn clear_all() {
  240. match unsafe { PLATFORM.sbi.ipi.as_ref() } {
  241. Some(ipi) => ipi.clear(),
  242. None => error!("SBI or IPI device not initialized"),
  243. }
  244. }
  245. pub fn hart_mask_clear(hart_mask: HartMask, hart_id: usize) -> HartMask {
  246. let (mask, mask_base) = hart_mask.into_inner();
  247. if mask_base == usize::MAX {
  248. return HartMask::from_mask_base(mask & (!(1 << hart_id)), 0);
  249. }
  250. let Some(idx) = hart_id.checked_sub(mask_base) else {
  251. return hart_mask;
  252. };
  253. if idx >= usize::BITS as usize {
  254. return hart_mask;
  255. }
  256. HartMask::from_mask_base(mask & (!(1 << hart_id)), mask_base)
  257. }