ipi.rs 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. use crate::platform::PLATFORM;
  2. use crate::riscv::csr::stimecmp;
  3. use crate::riscv::current_hartid;
  4. use crate::sbi::extensions::{hart_extension_probe, Extension};
  5. use crate::sbi::hsm::remote_hsm;
  6. use crate::sbi::rfence;
  7. use crate::sbi::trap;
  8. use crate::sbi::trap_stack::ROOT_STACK;
  9. use alloc::boxed::Box;
  10. use core::sync::atomic::Ordering::Relaxed;
  11. use rustsbi::{HartMask, SbiRet};
  12. use spin::Mutex;
  13. /// IPI type for supervisor software interrupt.
  14. pub(crate) const IPI_TYPE_SSOFT: u8 = 1 << 0;
  15. /// IPI type for memory fence operations.
  16. pub(crate) const IPI_TYPE_FENCE: u8 = 1 << 1;
  17. /// Trait defining interface for inter-processor interrupt device
  18. #[allow(unused)]
  19. pub trait IpiDevice {
  20. /// Read machine time value.
  21. fn read_mtime(&self) -> u64;
  22. /// Write machine time value.
  23. fn write_mtime(&self, val: u64);
  24. /// Read machine timer compare value for given hart.
  25. fn read_mtimecmp(&self, hart_idx: usize) -> u64;
  26. /// Write machine timer compare value for given hart.
  27. fn write_mtimecmp(&self, hart_idx: usize, val: u64);
  28. /// Read machine software interrupt pending bit for given hart.
  29. fn read_msip(&self, hart_idx: usize) -> bool;
  30. /// Set machine software interrupt pending bit for given hart.
  31. fn set_msip(&self, hart_idx: usize);
  32. /// Clear machine software interrupt pending bit for given hart.
  33. fn clear_msip(&self, hart_idx: usize);
  34. }
  35. /// SBI IPI implementation.
  36. pub struct SbiIpi {
  37. /// Reference to atomic pointer to IPI device.
  38. pub ipi_dev: Mutex<Box<dyn IpiDevice>>,
  39. /// Maximum hart ID in the system
  40. pub max_hart_id: usize,
  41. }
  42. impl rustsbi::Timer for SbiIpi {
  43. /// Set timer value for current hart.
  44. #[inline]
  45. fn set_timer(&self, stime_value: u64) {
  46. let hart_id = current_hartid();
  47. let uses_sstc = hart_extension_probe(hart_id, Extension::Sstc);
  48. // Set timer value based on extension support.
  49. if uses_sstc {
  50. stimecmp::set(stime_value);
  51. } else {
  52. self.write_mtimecmp(hart_id, stime_value);
  53. unsafe {
  54. riscv::register::mip::clear_stimer();
  55. }
  56. }
  57. // Enable machine timer interrupt.
  58. unsafe {
  59. riscv::register::mie::set_mtimer();
  60. }
  61. }
  62. }
  63. impl rustsbi::Ipi for SbiIpi {
  64. /// Send IPI to specified harts.
  65. #[inline]
  66. fn send_ipi(&self, hart_mask: rustsbi::HartMask) -> SbiRet {
  67. let mut hart_mask = hart_mask;
  68. for hart_id in 0..=self.max_hart_id {
  69. if !hart_mask.has_bit(hart_id) {
  70. continue;
  71. }
  72. // There are 2 situation to return invalid_param:
  73. // 1. We can not get hsm, which usually means this hart_id is bigger than MAX_HART_ID.
  74. // 2. BOARD hasn't init or this hart_id is not enabled by device tree.
  75. // In the next loop, we'll assume that all of above situation will not happened and
  76. // directly send ipi.
  77. let Some(hsm) = remote_hsm(hart_id) else {
  78. return SbiRet::invalid_param();
  79. };
  80. if unsafe {
  81. PLATFORM
  82. .info
  83. .cpu_enabled
  84. .is_none_or(|list| list.get(hart_id).is_none_or(|res| !(*res)))
  85. } {
  86. return SbiRet::invalid_param();
  87. }
  88. if !hsm.allow_ipi() {
  89. hart_mask = hart_mask_clear(hart_mask, hart_id);
  90. }
  91. }
  92. for hart_id in 0..=self.max_hart_id {
  93. if !hart_mask.has_bit(hart_id) {
  94. continue;
  95. }
  96. if set_ipi_type(hart_id, IPI_TYPE_SSOFT) == 0 {
  97. self.set_msip(hart_id);
  98. }
  99. }
  100. SbiRet::success(0)
  101. }
  102. }
  103. impl SbiIpi {
  104. /// Create new SBI IPI instance.
  105. #[inline]
  106. pub fn new(ipi_dev: Mutex<Box<dyn IpiDevice>>, max_hart_id: usize) -> Self {
  107. Self {
  108. ipi_dev,
  109. max_hart_id,
  110. }
  111. }
  112. /// Send IPI for remote fence operation.
  113. pub fn send_ipi_by_fence(
  114. &self,
  115. hart_mask: rustsbi::HartMask,
  116. ctx: rfence::RFenceContext,
  117. ) -> SbiRet {
  118. let current_hart = current_hartid();
  119. let mut hart_mask = hart_mask;
  120. for hart_id in 0..=self.max_hart_id {
  121. if !hart_mask.has_bit(hart_id) {
  122. continue;
  123. }
  124. // There are 2 situation to return invalid_param:
  125. // 1. We can not get hsm, which usually means this hart_id is bigger than MAX_HART_ID.
  126. // 2. BOARD hasn't init or this hart_id is not enabled by device tree.
  127. // In the next loop, we'll assume that all of above situation will not happened and
  128. // directly send ipi.
  129. let Some(hsm) = remote_hsm(hart_id) else {
  130. return SbiRet::invalid_param();
  131. };
  132. if unsafe {
  133. PLATFORM
  134. .info
  135. .cpu_enabled
  136. .is_none_or(|list| list.get(hart_id).is_none_or(|res| !(*res)))
  137. } {
  138. return SbiRet::invalid_param();
  139. }
  140. if !hsm.allow_ipi() {
  141. hart_mask = hart_mask_clear(hart_mask, hart_id);
  142. }
  143. }
  144. // Send fence operations to target harts
  145. for hart_id in 0..=self.max_hart_id {
  146. if !hart_mask.has_bit(hart_id) {
  147. continue;
  148. }
  149. if let Some(remote) = rfence::remote_rfence(hart_id) {
  150. if let Some(local) = rfence::local_rfence() {
  151. local.add();
  152. }
  153. remote.set(ctx);
  154. if hart_id != current_hart {
  155. let old_ipi_type = set_ipi_type(hart_id, IPI_TYPE_FENCE);
  156. if old_ipi_type == 0 {
  157. self.set_msip(hart_id);
  158. }
  159. }
  160. }
  161. }
  162. // Wait for all fence operations to complete
  163. while !rfence::local_rfence().unwrap().is_sync() {
  164. trap::rfence_single_handler();
  165. }
  166. SbiRet::success(0)
  167. }
  168. /// Get lower 32 bits of machine time.
  169. #[inline]
  170. pub fn get_time(&self) -> usize {
  171. self.ipi_dev.lock().read_mtime() as usize
  172. }
  173. /// Get upper 32 bits of machine time.
  174. #[inline]
  175. pub fn get_timeh(&self) -> usize {
  176. (self.ipi_dev.lock().read_mtime() >> 32) as usize
  177. }
  178. /// Set machine software interrupt pending for hart.
  179. #[inline]
  180. pub fn set_msip(&self, hart_idx: usize) {
  181. self.ipi_dev.lock().set_msip(hart_idx);
  182. }
  183. /// Clear machine software interrupt pending for hart.
  184. #[inline]
  185. pub fn clear_msip(&self, hart_idx: usize) {
  186. self.ipi_dev.lock().clear_msip(hart_idx);
  187. }
  188. /// Write machine timer compare value for hart.
  189. #[inline]
  190. pub fn write_mtimecmp(&self, hart_idx: usize, val: u64) {
  191. self.ipi_dev.lock().write_mtimecmp(hart_idx, val);
  192. }
  193. /// Clear all pending interrupts for current hart.
  194. #[inline]
  195. pub fn clear(&self) {
  196. let hart_id = current_hartid();
  197. // Load ipi_dev once instead of twice
  198. let ipi_dev = self.ipi_dev.lock();
  199. ipi_dev.clear_msip(hart_id);
  200. ipi_dev.write_mtimecmp(hart_id, u64::MAX);
  201. }
  202. }
  203. /// Set IPI type for specified hart.
  204. pub fn set_ipi_type(hart_id: usize, event_id: u8) -> u8 {
  205. unsafe {
  206. ROOT_STACK
  207. .get_unchecked_mut(hart_id)
  208. .hart_context()
  209. .ipi_type
  210. .fetch_or(event_id, Relaxed)
  211. }
  212. }
  213. /// Get and reset IPI type for current hart.
  214. pub fn get_and_reset_ipi_type() -> u8 {
  215. unsafe {
  216. ROOT_STACK
  217. .get_unchecked_mut(current_hartid())
  218. .hart_context()
  219. .ipi_type
  220. .swap(0, Relaxed)
  221. }
  222. }
  223. /// Clear machine software interrupt pending for current hart.
  224. #[inline]
  225. pub fn clear_msip() {
  226. match unsafe { PLATFORM.sbi.ipi.as_ref() } {
  227. Some(ipi) => ipi.clear_msip(current_hartid()),
  228. None => error!("SBI or IPI device not initialized"),
  229. }
  230. }
  231. /// Clear machine timer interrupt for current hart.
  232. #[inline]
  233. pub fn clear_mtime() {
  234. match unsafe { PLATFORM.sbi.ipi.as_ref() } {
  235. Some(ipi) => ipi.write_mtimecmp(current_hartid(), u64::MAX),
  236. None => error!("SBI or IPI device not initialized"),
  237. }
  238. }
  239. /// Clear all pending interrupts for current hart.
  240. #[inline]
  241. pub fn clear_all() {
  242. match unsafe { PLATFORM.sbi.ipi.as_ref() } {
  243. Some(ipi) => ipi.clear(),
  244. None => error!("SBI or IPI device not initialized"),
  245. }
  246. }
  247. pub fn hart_mask_clear(hart_mask: HartMask, hart_id: usize) -> HartMask {
  248. let (mask, mask_base) = hart_mask.into_inner();
  249. if mask_base == usize::MAX {
  250. return HartMask::from_mask_base(mask & (!(1 << hart_id)), 0);
  251. }
  252. let Some(idx) = hart_id.checked_sub(mask_base) else {
  253. return hart_mask;
  254. };
  255. if idx >= usize::BITS as usize {
  256. return hart_mask;
  257. }
  258. HartMask::from_mask_base(mask & (!(1 << hart_id)), mask_base)
  259. }