use core::cmp::min; use managed::Managed; use {Error, Result}; use wire::{IpVersion, IpProtocol, Ipv4Repr, Ipv4Packet}; use socket::{IpRepr, Socket}; use storage::{Resettable, RingBuffer}; /// A buffered raw IP packet. #[derive(Debug)] pub struct PacketBuffer<'a> { size: usize, payload: Managed<'a, [u8]>, } impl<'a> PacketBuffer<'a> { /// Create a buffered packet. pub fn new(payload: T) -> PacketBuffer<'a> where T: Into> { PacketBuffer { size: 0, payload: payload.into(), } } fn as_ref<'b>(&'b self) -> &'b [u8] { &self.payload[..self.size] } fn as_mut<'b>(&'b mut self) -> &'b mut [u8] { &mut self.payload[..self.size] } fn resize<'b>(&'b mut self, size: usize) -> Result<&'b mut Self> { if self.payload.len() >= size { self.size = size; Ok(self) } else { Err(Error::Truncated) } } } impl<'a> Resettable for PacketBuffer<'a> { fn reset(&mut self) { self.size = 0; } } /// A raw IP packet ring buffer. pub type SocketBuffer<'a, 'b: 'a> = RingBuffer<'a, PacketBuffer<'b>>; /// A raw IP socket. /// /// A raw socket is bound to a specific IP protocol, and owns /// transmit and receive packet buffers. #[derive(Debug)] pub struct RawSocket<'a, 'b: 'a> { debug_id: usize, ip_version: IpVersion, ip_protocol: IpProtocol, rx_buffer: SocketBuffer<'a, 'b>, tx_buffer: SocketBuffer<'a, 'b>, } impl<'a, 'b> RawSocket<'a, 'b> { /// Create a raw IP socket bound to the given IP version and datagram protocol, /// with the given buffers. pub fn new(ip_version: IpVersion, ip_protocol: IpProtocol, rx_buffer: SocketBuffer<'a, 'b>, tx_buffer: SocketBuffer<'a, 'b>) -> Socket<'a, 'b> { Socket::Raw(RawSocket { debug_id: 0, ip_version, ip_protocol, rx_buffer, tx_buffer, }) } /// Return the debug identifier. #[inline] pub fn debug_id(&self) -> usize { self.debug_id } /// Set the debug identifier. /// /// The debug identifier is a number printed in socket trace messages. /// It could as well be used by the user code. pub fn set_debug_id(&mut self, id: usize) { self.debug_id = id; } /// Return the IP version the socket is bound to. #[inline] pub fn ip_version(&self) -> IpVersion { self.ip_version } /// Return the IP protocol the socket is bound to. #[inline] pub fn ip_protocol(&self) -> IpProtocol { self.ip_protocol } /// Check whether the transmit buffer is full. #[inline] pub fn can_send(&self) -> bool { !self.tx_buffer.full() } /// Check whether the receive buffer is not empty. #[inline] pub fn can_recv(&self) -> bool { !self.rx_buffer.empty() } /// Enqueue a packet to send, and return a pointer to its payload. /// /// This function returns `Err(Error::Exhausted)` if the size is greater than /// the transmit packet buffer size. /// /// If the buffer is filled in a way that does not match the socket's /// IP version or protocol, the packet will be silently dropped. /// /// **Note:** The IP header is parsed and reserialized, and may not match /// the header actually transmitted bit for bit. pub fn send(&mut self, size: usize) -> Result<&mut [u8]> { let packet_buf = self.tx_buffer.try_enqueue(|buf| buf.resize(size))?; net_trace!("[{}]:{}:{}: buffer to send {} octets", self.debug_id, self.ip_version, self.ip_protocol, packet_buf.size); Ok(packet_buf.as_mut()) } /// Enqueue a packet to send, and fill it from a slice. /// /// See also [send](#method.send). pub fn send_slice(&mut self, data: &[u8]) -> Result<()> { self.send(data.len())?.copy_from_slice(data); Ok(()) } /// Dequeue a packet, and return a pointer to the payload. /// /// This function returns `Err(Error::Exhausted)` if the receive buffer is empty. /// /// **Note:** The IP header is parsed and reserialized, and may not match /// the header actually received bit for bit. pub fn recv(&mut self) -> Result<&[u8]> { let packet_buf = self.rx_buffer.dequeue()?; net_trace!("[{}]:{}:{}: receive {} buffered octets", self.debug_id, self.ip_version, self.ip_protocol, packet_buf.size); Ok(&packet_buf.as_ref()) } /// Dequeue a packet, and copy the payload into the given slice. /// /// See also [recv](#method.recv). pub fn recv_slice(&mut self, data: &mut [u8]) -> Result { let buffer = self.recv()?; let length = min(data.len(), buffer.len()); data[..length].copy_from_slice(&buffer[..length]); Ok(length) } pub(crate) fn process(&mut self, ip_repr: &IpRepr, payload: &[u8]) -> Result<()> { if ip_repr.version() != self.ip_version { return Err(Error::Rejected) } if ip_repr.protocol() != self.ip_protocol { return Err(Error::Rejected) } let header_len = ip_repr.buffer_len(); let total_len = header_len + payload.len(); let packet_buf = self.rx_buffer.try_enqueue(|buf| buf.resize(total_len))?; ip_repr.emit(&mut packet_buf.as_mut()[..header_len]); packet_buf.as_mut()[header_len..].copy_from_slice(payload); net_trace!("[{}]:{}:{}: receiving {} octets", self.debug_id, self.ip_version, self.ip_protocol, packet_buf.size); Ok(()) } pub(crate) fn dispatch(&mut self, emit: F) -> Result<()> where F: FnOnce((IpRepr, &[u8])) -> Result<()> { fn prepare(protocol: IpProtocol, buffer: &mut [u8]) -> Result<(IpRepr, &[u8])> { match IpVersion::of_packet(buffer.as_ref())? { IpVersion::Ipv4 => { let mut packet = Ipv4Packet::new_checked(buffer.as_mut())?; if packet.protocol() != protocol { return Err(Error::Unaddressable) } packet.fill_checksum(); let packet = Ipv4Packet::new(&*packet.into_inner()); let ipv4_repr = Ipv4Repr::parse(&packet)?; Ok((IpRepr::Ipv4(ipv4_repr), packet.payload())) } IpVersion::Unspecified => unreachable!(), IpVersion::__Nonexhaustive => unreachable!() } } let mut packet_buf = self.tx_buffer.dequeue()?; match prepare(self.ip_protocol, packet_buf.as_mut()) { Ok((ip_repr, raw_packet)) => { net_trace!("[{}]:{}:{}: sending {} octets", self.debug_id, self.ip_version, self.ip_protocol, ip_repr.buffer_len() + raw_packet.len()); emit((ip_repr, raw_packet)) } Err(error) => { net_debug!("[{}]:{}:{}: dropping outgoing packet ({})", self.debug_id, self.ip_version, self.ip_protocol, error); // This case is a bit special because in every other socket, no matter what data // is put into the socket, it can be sent, but it's possible to put data into // a raw socket that may not be, and we're generic over the result type, so // we can't possibly return Ok(()) here. Err(Error::Rejected) } } } } #[cfg(test)] mod test { use wire::{Ipv4Address, IpRepr, Ipv4Repr}; use super::*; fn buffer(packets: usize) -> SocketBuffer<'static, 'static> { let mut storage = vec![]; for _ in 0..packets { storage.push(PacketBuffer::new(vec![0; 24])) } SocketBuffer::new(storage) } fn socket(rx_buffer: SocketBuffer<'static, 'static>, tx_buffer: SocketBuffer<'static, 'static>) -> RawSocket<'static, 'static> { match RawSocket::new(IpVersion::Ipv4, IpProtocol::Unknown(63), rx_buffer, tx_buffer) { Socket::Raw(socket) => socket, _ => unreachable!() } } const HEADER_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr { src_addr: Ipv4Address([10, 0, 0, 1]), dst_addr: Ipv4Address([10, 0, 0, 2]), protocol: IpProtocol::Unknown(63), payload_len: 4 }); const PACKET_BYTES: [u8; 24] = [ 0x45, 0x00, 0x00, 0x18, 0x00, 0x00, 0x40, 0x00, 0x40, 0x3f, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x01, 0x0a, 0x00, 0x00, 0x02, 0xaa, 0x00, 0x00, 0xff ]; const PACKET_PAYLOAD: [u8; 4] = [ 0xaa, 0x00, 0x00, 0xff ]; #[test] fn test_send_truncated() { let mut socket = socket(buffer(0), buffer(1)); assert_eq!(socket.send_slice(&[0; 32][..]), Err(Error::Truncated)); } #[test] fn test_send_dispatch() { let mut socket = socket(buffer(0), buffer(1)); assert!(socket.can_send()); assert_eq!(socket.dispatch(|_| unreachable!()), Err(Error::Exhausted)); assert_eq!(socket.send_slice(&PACKET_BYTES[..]), Ok(())); assert_eq!(socket.send_slice(b""), Err(Error::Exhausted)); assert!(!socket.can_send()); assert_eq!(socket.dispatch(|(ip_repr, ip_payload)| { assert_eq!(ip_repr, HEADER_REPR); assert_eq!(ip_payload, &PACKET_PAYLOAD); Err(Error::Unaddressable) }), Err(Error::Unaddressable)); /*assert!(!socket.can_send());*/ assert_eq!(socket.dispatch(|(ip_repr, ip_payload)| { assert_eq!(ip_repr, HEADER_REPR); assert_eq!(ip_payload, &PACKET_PAYLOAD); Ok(()) }), /*Ok(())*/ Err(Error::Exhausted)); assert!(socket.can_send()); } #[test] fn test_send_illegal() { let mut socket = socket(buffer(0), buffer(1)); let mut wrong_version = PACKET_BYTES.clone(); Ipv4Packet::new(&mut wrong_version).set_version(5); assert_eq!(socket.send_slice(&wrong_version[..]), Ok(())); assert_eq!(socket.dispatch(|_| unreachable!()), Err(Error::Rejected)); let mut wrong_protocol = PACKET_BYTES.clone(); Ipv4Packet::new(&mut wrong_protocol).set_protocol(IpProtocol::Tcp); assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(())); assert_eq!(socket.dispatch(|_| unreachable!()), Err(Error::Rejected)); } #[test] fn test_recv_process() { let mut socket = socket(buffer(1), buffer(0)); assert!(!socket.can_recv()); let mut cksumd_packet = PACKET_BYTES.clone(); Ipv4Packet::new(&mut cksumd_packet).fill_checksum(); assert_eq!(socket.recv(), Err(Error::Exhausted)); assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD), Ok(())); assert!(socket.can_recv()); assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD), Err(Error::Exhausted)); assert_eq!(socket.recv(), Ok(&cksumd_packet[..])); assert!(!socket.can_recv()); } #[test] fn test_recv_truncated_slice() { let mut socket = socket(buffer(1), buffer(0)); assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD), Ok(())); let mut slice = [0; 4]; assert_eq!(socket.recv_slice(&mut slice[..]), Ok(4)); assert_eq!(&slice, &PACKET_BYTES[..slice.len()]); } #[test] fn test_recv_truncated_packet() { let mut socket = socket(buffer(1), buffer(0)); let mut buffer = vec![0; 128]; buffer[..PACKET_BYTES.len()].copy_from_slice(&PACKET_BYTES[..]); assert_eq!(socket.process(&HEADER_REPR, &buffer), Err(Error::Truncated)); } }