// Heads up! Before working on this file you should read the parts // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work // and RFCs 8200 and 4861 for any IPv6 and NDISC work. #[cfg(test)] mod tests; #[cfg(feature = "medium-ethernet")] mod ethernet; #[cfg(feature = "medium-ieee802154")] mod ieee802154; #[cfg(feature = "proto-ipv4")] mod ipv4; #[cfg(feature = "proto-ipv6")] mod ipv6; #[cfg(feature = "proto-sixlowpan")] mod sixlowpan; #[cfg(feature = "proto-igmp")] mod igmp; #[cfg(feature = "proto-igmp")] pub use igmp::MulticastError; use super::packet::*; use core::result::Result; use heapless::{LinearMap, Vec}; #[cfg(feature = "_proto-fragmentation")] use super::fragmentation::FragKey; #[cfg(any(feature = "proto-ipv4", feature = "proto-sixlowpan"))] use super::fragmentation::PacketAssemblerSet; use super::fragmentation::{Fragmenter, FragmentsBuffer}; #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] use super::neighbor::{Answer as NeighborAnswer, Cache as NeighborCache}; use super::socket_set::SocketSet; use crate::config::{ IFACE_MAX_ADDR_COUNT, IFACE_MAX_MULTICAST_GROUP_COUNT, IFACE_MAX_SIXLOWPAN_ADDRESS_CONTEXT_COUNT, }; use crate::iface::Routes; use crate::phy::PacketMeta; use crate::phy::{ChecksumCapabilities, Device, DeviceCapabilities, Medium, RxToken, TxToken}; use crate::rand::Rand; #[cfg(feature = "socket-dns")] use crate::socket::dns; use crate::socket::*; use crate::time::{Duration, Instant}; use crate::wire::*; macro_rules! check { ($e:expr) => { match $e { Ok(x) => x, Err(_) => { // concat!/stringify! doesn't work with defmt macros #[cfg(not(feature = "defmt"))] net_trace!(concat!("iface: malformed ", stringify!($e))); #[cfg(feature = "defmt")] net_trace!("iface: malformed"); return Default::default(); } } }; } use check; /// A network interface. /// /// The network interface logically owns a number of other data structures; to avoid /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be /// a `&mut [T]`, or `Vec` if a heap is available. pub struct Interface { pub(crate) inner: InterfaceInner, fragments: FragmentsBuffer, fragmenter: Fragmenter, } /// The device independent part of an Ethernet network interface. /// /// Separating the device from the data required for processing and dispatching makes /// it possible to borrow them independently. For example, the tx and rx tokens borrow /// the `device` mutably until they're used, which makes it impossible to call other /// methods on the `Interface` in this time (since its `device` field is borrowed /// exclusively). However, it is still possible to call methods on its `inner` field. pub struct InterfaceInner { caps: DeviceCapabilities, now: Instant, rand: Rand, #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] neighbor_cache: NeighborCache, hardware_addr: HardwareAddress, #[cfg(feature = "medium-ieee802154")] sequence_no: u8, #[cfg(feature = "medium-ieee802154")] pan_id: Option, #[cfg(feature = "proto-ipv4-fragmentation")] ipv4_id: u16, #[cfg(feature = "proto-sixlowpan")] sixlowpan_address_context: Vec, #[cfg(feature = "proto-sixlowpan-fragmentation")] tag: u16, ip_addrs: Vec, #[cfg(feature = "proto-ipv4")] any_ip: bool, routes: Routes, #[cfg(feature = "proto-igmp")] ipv4_multicast_groups: LinearMap, /// When to report for (all or) the next multicast group membership via IGMP #[cfg(feature = "proto-igmp")] igmp_report_state: IgmpReportState, } /// Configuration structure used for creating a network interface. #[non_exhaustive] pub struct Config { /// Random seed. /// /// It is strongly recommended that the random seed is different on each boot, /// to avoid problems with TCP port/sequence collisions. /// /// The seed doesn't have to be cryptographically secure. pub random_seed: u64, /// Set the Hardware address the interface will use. /// /// # Panics /// Creating the interface panics if the address is not unicast. pub hardware_addr: HardwareAddress, /// Set the IEEE802.15.4 PAN ID the interface will use. /// /// **NOTE**: we use the same PAN ID for destination and source. #[cfg(feature = "medium-ieee802154")] pub pan_id: Option, } impl Config { pub fn new(hardware_addr: HardwareAddress) -> Self { Config { random_seed: 0, hardware_addr, #[cfg(feature = "medium-ieee802154")] pan_id: None, } } } impl Interface { /// Create a network interface using the previously provided configuration. /// /// # Panics /// This function panics if the [`Config::hardware_address`] does not match /// the medium of the device. pub fn new(config: Config, device: &mut D, now: Instant) -> Self where D: Device + ?Sized, { let caps = device.capabilities(); assert_eq!( config.hardware_addr.medium(), caps.medium, "The hardware address does not match the medium of the interface." ); let mut rand = Rand::new(config.random_seed); #[cfg(feature = "medium-ieee802154")] let mut sequence_no; #[cfg(feature = "medium-ieee802154")] loop { sequence_no = (rand.rand_u32() & 0xff) as u8; if sequence_no != 0 { break; } } #[cfg(feature = "proto-sixlowpan")] let mut tag; #[cfg(feature = "proto-sixlowpan")] loop { tag = rand.rand_u16(); if tag != 0 { break; } } #[cfg(feature = "proto-ipv4")] let mut ipv4_id; #[cfg(feature = "proto-ipv4")] loop { ipv4_id = rand.rand_u16(); if ipv4_id != 0 { break; } } Interface { fragments: FragmentsBuffer { #[cfg(feature = "proto-sixlowpan")] decompress_buf: [0u8; sixlowpan::MAX_DECOMPRESSED_LEN], #[cfg(feature = "_proto-fragmentation")] assembler: PacketAssemblerSet::new(), #[cfg(feature = "_proto-fragmentation")] reassembly_timeout: Duration::from_secs(60), }, fragmenter: Fragmenter::new(), inner: InterfaceInner { now, caps, hardware_addr: config.hardware_addr, ip_addrs: Vec::new(), #[cfg(feature = "proto-ipv4")] any_ip: false, routes: Routes::new(), #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] neighbor_cache: NeighborCache::new(), #[cfg(feature = "proto-igmp")] ipv4_multicast_groups: LinearMap::new(), #[cfg(feature = "proto-igmp")] igmp_report_state: IgmpReportState::Inactive, #[cfg(feature = "medium-ieee802154")] sequence_no, #[cfg(feature = "medium-ieee802154")] pan_id: config.pan_id, #[cfg(feature = "proto-sixlowpan-fragmentation")] tag, #[cfg(feature = "proto-ipv4-fragmentation")] ipv4_id, #[cfg(feature = "proto-sixlowpan")] sixlowpan_address_context: Vec::new(), rand, }, } } /// Get the socket context. /// /// The context is needed for some socket methods. pub fn context(&mut self) -> &mut InterfaceInner { &mut self.inner } /// Get the HardwareAddress address of the interface. /// /// # Panics /// This function panics if the medium is not Ethernet or Ieee802154. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] pub fn hardware_addr(&self) -> HardwareAddress { #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))] assert!(self.inner.caps.medium == Medium::Ethernet); #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))] assert!(self.inner.caps.medium == Medium::Ieee802154); #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))] assert!( self.inner.caps.medium == Medium::Ethernet || self.inner.caps.medium == Medium::Ieee802154 ); self.inner.hardware_addr } /// Set the HardwareAddress address of the interface. /// /// # Panics /// This function panics if the address is not unicast, and if the medium is not Ethernet or /// Ieee802154. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] pub fn set_hardware_addr(&mut self, addr: HardwareAddress) { #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))] assert!(self.inner.caps.medium == Medium::Ethernet); #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))] assert!(self.inner.caps.medium == Medium::Ieee802154); #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))] assert!( self.inner.caps.medium == Medium::Ethernet || self.inner.caps.medium == Medium::Ieee802154 ); InterfaceInner::check_hardware_addr(&addr); self.inner.hardware_addr = addr; } /// Get the IP addresses of the interface. pub fn ip_addrs(&self) -> &[IpCidr] { self.inner.ip_addrs.as_ref() } /// Get the first IPv4 address if present. #[cfg(feature = "proto-ipv4")] pub fn ipv4_addr(&self) -> Option { self.inner.ipv4_addr() } /// Get the first IPv6 address if present. #[cfg(feature = "proto-ipv6")] pub fn ipv6_addr(&self) -> Option { self.inner.ipv6_addr() } /// Get an address from the interface that could be used as source address. For IPv4, this is /// the first IPv4 address from the list of addresses. For IPv6, the address is based on the /// destination address and uses RFC6724 for selecting the source address. pub fn get_source_address(&self, dst_addr: &IpAddress) -> Option { self.inner.get_source_address(dst_addr) } /// Get an address from the interface that could be used as source address. This is the first /// IPv4 address from the list of addresses in the interface. #[cfg(feature = "proto-ipv4")] pub fn get_source_address_ipv4(&self, dst_addr: &Ipv4Address) -> Option { self.inner.get_source_address_ipv4(dst_addr) } /// Get an address from the interface that could be used as source address. The selection is /// based on RFC6724. #[cfg(feature = "proto-ipv6")] pub fn get_source_address_ipv6(&self, dst_addr: &Ipv6Address) -> Option { self.inner.get_source_address_ipv6(dst_addr) } /// Update the IP addresses of the interface. /// /// # Panics /// This function panics if any of the addresses are not unicast. pub fn update_ip_addrs)>(&mut self, f: F) { f(&mut self.inner.ip_addrs); InterfaceInner::flush_cache(&mut self.inner); InterfaceInner::check_ip_addrs(&self.inner.ip_addrs) } /// Check whether the interface has the given IP address assigned. pub fn has_ip_addr>(&self, addr: T) -> bool { self.inner.has_ip_addr(addr) } pub fn routes(&self) -> &Routes { &self.inner.routes } pub fn routes_mut(&mut self) -> &mut Routes { &mut self.inner.routes } /// Enable or disable the AnyIP capability. /// /// AnyIP allowins packets to be received /// locally on IPv4 addresses other than the interface's configured [ip_addrs]. /// When AnyIP is enabled and a route prefix in [`routes`](Self::routes) specifies one of /// the interface's [`ip_addrs`](Self::ip_addrs) as its gateway, the interface will accept /// packets addressed to that prefix. /// /// # IPv6 /// /// This option is not available or required for IPv6 as packets sent to /// the interface are not filtered by IPv6 address. #[cfg(feature = "proto-ipv4")] pub fn set_any_ip(&mut self, any_ip: bool) { self.inner.any_ip = any_ip; } /// Get whether AnyIP is enabled. /// /// See [`set_any_ip`](Self::set_any_ip) for details on AnyIP #[cfg(feature = "proto-ipv4")] pub fn any_ip(&self) -> bool { self.inner.any_ip } /// Get the 6LoWPAN address contexts. #[cfg(feature = "proto-sixlowpan")] pub fn sixlowpan_address_context( &self, ) -> &Vec { &self.inner.sixlowpan_address_context } /// Get a mutable reference to the 6LoWPAN address contexts. #[cfg(feature = "proto-sixlowpan")] pub fn sixlowpan_address_context_mut( &mut self, ) -> &mut Vec { &mut self.inner.sixlowpan_address_context } /// Get the packet reassembly timeout. #[cfg(feature = "_proto-fragmentation")] pub fn reassembly_timeout(&self) -> Duration { self.fragments.reassembly_timeout } /// Set the packet reassembly timeout. #[cfg(feature = "_proto-fragmentation")] pub fn set_reassembly_timeout(&mut self, timeout: Duration) { if timeout > Duration::from_secs(60) { net_debug!("RFC 4944 specifies that the reassembly timeout MUST be set to a maximum of 60 seconds"); } self.fragments.reassembly_timeout = timeout; } /// Transmit packets queued in the given sockets, and receive packets queued /// in the device. /// /// This function returns a boolean value indicating whether any packets were /// processed or emitted, and thus, whether the readiness of any socket might /// have changed. pub fn poll( &mut self, timestamp: Instant, device: &mut D, sockets: &mut SocketSet<'_>, ) -> bool where D: Device + ?Sized, { self.inner.now = timestamp; #[cfg(feature = "_proto-fragmentation")] self.fragments.assembler.remove_expired(timestamp); match self.inner.caps.medium { #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => { #[cfg(feature = "proto-sixlowpan-fragmentation")] if self.sixlowpan_egress(device) { return true; } } #[cfg(any(feature = "medium-ethernet", feature = "medium-ip"))] _ => { #[cfg(feature = "proto-ipv4-fragmentation")] if self.ipv4_egress(device) { return true; } } } let mut readiness_may_have_changed = false; loop { let mut did_something = false; did_something |= self.socket_ingress(device, sockets); did_something |= self.socket_egress(device, sockets); #[cfg(feature = "proto-igmp")] { did_something |= self.igmp_egress(device); } if did_something { readiness_may_have_changed = true; } else { break; } } readiness_may_have_changed } /// Return a _soft deadline_ for calling [poll] the next time. /// The [Instant] returned is the time at which you should call [poll] next. /// It is harmless (but wastes energy) to call it before the [Instant], and /// potentially harmful (impacting quality of service) to call it after the /// [Instant] /// /// [poll]: #method.poll /// [Instant]: struct.Instant.html pub fn poll_at(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option { self.inner.now = timestamp; #[cfg(feature = "_proto-fragmentation")] if !self.fragmenter.is_empty() { return Some(Instant::from_millis(0)); } let inner = &mut self.inner; sockets .items() .filter_map(move |item| { let socket_poll_at = item.socket.poll_at(inner); match item .meta .poll_at(socket_poll_at, |ip_addr| inner.has_neighbor(&ip_addr)) { PollAt::Ingress => None, PollAt::Time(instant) => Some(instant), PollAt::Now => Some(Instant::from_millis(0)), } }) .min() } /// Return an _advisory wait time_ for calling [poll] the next time. /// The [Duration] returned is the time left to wait before calling [poll] next. /// It is harmless (but wastes energy) to call it before the [Duration] has passed, /// and potentially harmful (impacting quality of service) to call it after the /// [Duration] has passed. /// /// [poll]: #method.poll /// [Duration]: struct.Duration.html pub fn poll_delay(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option { match self.poll_at(timestamp, sockets) { Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp), Some(_) => Some(Duration::from_millis(0)), _ => None, } } fn socket_ingress(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool where D: Device + ?Sized, { let mut processed_any = false; while let Some((rx_token, tx_token)) = device.receive(self.inner.now) { let rx_meta = rx_token.meta(); rx_token.consume(|frame| { if frame.is_empty() { return; } match self.inner.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => { if let Some(packet) = self.inner.process_ethernet( sockets, rx_meta, frame, &mut self.fragments, ) { if let Err(err) = self.inner.dispatch(tx_token, packet, &mut self.fragmenter) { net_debug!("Failed to send response: {:?}", err); } } } #[cfg(feature = "medium-ip")] Medium::Ip => { if let Some(packet) = self.inner .process_ip(sockets, rx_meta, frame, &mut self.fragments) { if let Err(err) = self.inner.dispatch_ip( tx_token, PacketMeta::default(), packet, &mut self.fragmenter, ) { net_debug!("Failed to send response: {:?}", err); } } } #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => { if let Some(packet) = self.inner.process_ieee802154( sockets, rx_meta, frame, &mut self.fragments, ) { if let Err(err) = self.inner.dispatch_ip( tx_token, PacketMeta::default(), packet, &mut self.fragmenter, ) { net_debug!("Failed to send response: {:?}", err); } } } } processed_any = true; }); } processed_any } fn socket_egress(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool where D: Device + ?Sized, { let _caps = device.capabilities(); enum EgressError { Exhausted, Dispatch(DispatchError), } let mut emitted_any = false; for item in sockets.items_mut() { if !item .meta .egress_permitted(self.inner.now, |ip_addr| self.inner.has_neighbor(&ip_addr)) { continue; } let mut neighbor_addr = None; let mut respond = |inner: &mut InterfaceInner, meta: PacketMeta, response: Packet| { neighbor_addr = Some(response.ip_repr().dst_addr()); let t = device.transmit(inner.now).ok_or_else(|| { net_debug!("failed to transmit IP: device exhausted"); EgressError::Exhausted })?; inner .dispatch_ip(t, meta, response, &mut self.fragmenter) .map_err(EgressError::Dispatch)?; emitted_any = true; Ok(()) }; let result = match &mut item.socket { #[cfg(feature = "socket-raw")] Socket::Raw(socket) => socket.dispatch(&mut self.inner, |inner, (ip, raw)| { respond( inner, PacketMeta::default(), Packet::new(ip, IpPayload::Raw(raw)), ) }), #[cfg(feature = "socket-icmp")] Socket::Icmp(socket) => { socket.dispatch(&mut self.inner, |inner, response| match response { #[cfg(feature = "proto-ipv4")] (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => respond( inner, PacketMeta::default(), Packet::new_ipv4(ipv4_repr, IpPayload::Icmpv4(icmpv4_repr)), ), #[cfg(feature = "proto-ipv6")] (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => respond( inner, PacketMeta::default(), Packet::new_ipv6(ipv6_repr, IpPayload::Icmpv6(icmpv6_repr)), ), #[allow(unreachable_patterns)] _ => unreachable!(), }) } #[cfg(feature = "socket-udp")] Socket::Udp(socket) => { socket.dispatch(&mut self.inner, |inner, meta, (ip, udp, payload)| { respond(inner, meta, Packet::new(ip, IpPayload::Udp(udp, payload))) }) } #[cfg(feature = "socket-tcp")] Socket::Tcp(socket) => socket.dispatch(&mut self.inner, |inner, (ip, tcp)| { respond( inner, PacketMeta::default(), Packet::new(ip, IpPayload::Tcp(tcp)), ) }), #[cfg(feature = "socket-dhcpv4")] Socket::Dhcpv4(socket) => { socket.dispatch(&mut self.inner, |inner, (ip, udp, dhcp)| { respond( inner, PacketMeta::default(), Packet::new_ipv4(ip, IpPayload::Dhcpv4(udp, dhcp)), ) }) } #[cfg(feature = "socket-dns")] Socket::Dns(socket) => socket.dispatch(&mut self.inner, |inner, (ip, udp, dns)| { respond( inner, PacketMeta::default(), Packet::new(ip, IpPayload::Udp(udp, dns)), ) }), }; match result { Err(EgressError::Exhausted) => break, // Device buffer full. Err(EgressError::Dispatch(_)) => { // `NeighborCache` already takes care of rate limiting the neighbor discovery // requests from the socket. However, without an additional rate limiting // mechanism, we would spin on every socket that has yet to discover its // neighbor. item.meta.neighbor_missing( self.inner.now, neighbor_addr.expect("non-IP response packet"), ); } Ok(()) => {} } } emitted_any } /// Process fragments that still need to be sent for IPv4 packets. /// /// This function returns a boolean value indicating whether any packets were /// processed or emitted, and thus, whether the readiness of any socket might /// have changed. #[cfg(feature = "proto-ipv4-fragmentation")] fn ipv4_egress(&mut self, device: &mut D) -> bool where D: Device + ?Sized, { // Reset the buffer when we transmitted everything. if self.fragmenter.finished() { self.fragmenter.reset(); } if self.fragmenter.is_empty() { return false; } let pkt = &self.fragmenter; if pkt.packet_len > pkt.sent_bytes { if let Some(tx_token) = device.transmit(self.inner.now) { self.inner .dispatch_ipv4_frag(tx_token, &mut self.fragmenter); return true; } } false } /// Process fragments that still need to be sent for 6LoWPAN packets. /// /// This function returns a boolean value indicating whether any packets were /// processed or emitted, and thus, whether the readiness of any socket might /// have changed. #[cfg(feature = "proto-sixlowpan-fragmentation")] fn sixlowpan_egress(&mut self, device: &mut D) -> bool where D: Device + ?Sized, { // Reset the buffer when we transmitted everything. if self.fragmenter.finished() { self.fragmenter.reset(); } if self.fragmenter.is_empty() { return false; } let pkt = &self.fragmenter; if pkt.packet_len > pkt.sent_bytes { if let Some(tx_token) = device.transmit(self.inner.now) { self.inner .dispatch_ieee802154_frag(tx_token, &mut self.fragmenter); return true; } } false } } impl InterfaceInner { #[allow(unused)] // unused depending on which sockets are enabled pub(crate) fn now(&self) -> Instant { self.now } #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] #[allow(unused)] // unused depending on which sockets are enabled pub(crate) fn hardware_addr(&self) -> HardwareAddress { self.hardware_addr } #[allow(unused)] // unused depending on which sockets are enabled pub(crate) fn checksum_caps(&self) -> ChecksumCapabilities { self.caps.checksum.clone() } #[allow(unused)] // unused depending on which sockets are enabled pub(crate) fn ip_mtu(&self) -> usize { self.caps.ip_mtu() } #[allow(unused)] // unused depending on which sockets are enabled, and in tests pub(crate) fn rand(&mut self) -> &mut Rand { &mut self.rand } #[allow(unused)] // unused depending on which sockets are enabled pub(crate) fn get_source_address(&self, dst_addr: &IpAddress) -> Option { match dst_addr { #[cfg(feature = "proto-ipv4")] IpAddress::Ipv4(addr) => self.get_source_address_ipv4(addr).map(|a| a.into()), #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(addr) => self.get_source_address_ipv6(addr).map(|a| a.into()), } } #[cfg(feature = "proto-ipv4")] #[allow(unused)] pub(crate) fn get_source_address_ipv4(&self, _dst_addr: &Ipv4Address) -> Option { for cidr in self.ip_addrs.iter() { #[allow(irrefutable_let_patterns)] // if only ipv4 is enabled if let IpCidr::Ipv4(cidr) = cidr { return Some(cidr.address()); } } None } #[cfg(feature = "proto-ipv6")] #[allow(unused)] pub(crate) fn get_source_address_ipv6(&self, dst_addr: &Ipv6Address) -> Option { // RFC 6724 describes how to select the correct source address depending on the destination // address. // See RFC 6724 Section 4: Candidate source address fn is_candidate_source_address(dst_addr: &Ipv6Address, src_addr: &Ipv6Address) -> bool { // For all multicast and link-local destination addresses, the candidate address MUST // only be an address from the same link. if dst_addr.is_link_local() && !src_addr.is_link_local() { return false; } if dst_addr.is_multicast() && matches!(dst_addr.scope(), Ipv6AddressScope::LinkLocal) && src_addr.is_multicast() && !matches!(src_addr.scope(), Ipv6AddressScope::LinkLocal) { return false; } // Loopback addresses and multicast address can not be in the candidate source address // list. Except when the destination multicast address has a link-local scope, then the // source address can also be link-local multicast. if src_addr.is_loopback() || src_addr.is_multicast() { return false; } true } // See RFC 6724 Section 2.2: Common Prefix Length fn common_prefix_length(dst_addr: &Ipv6Cidr, src_addr: &Ipv6Address) -> usize { let addr = dst_addr.address(); let mut bits = 0; for (l, r) in addr.as_bytes().iter().zip(src_addr.as_bytes().iter()) { if l == r { bits += 8; } else { bits += (l ^ r).leading_zeros(); break; } } bits = bits.min(dst_addr.prefix_len() as u32); bits as usize } // Get the first address that is a candidate address. let mut candidate = self .ip_addrs .iter() .filter_map(|a| match a { #[cfg(feature = "proto-ipv4")] IpCidr::Ipv4(_) => None, #[cfg(feature = "proto-ipv6")] IpCidr::Ipv6(a) => Some(a), }) .find(|a| is_candidate_source_address(dst_addr, &a.address())) .unwrap(); for addr in self.ip_addrs.iter().filter_map(|a| match a { #[cfg(feature = "proto-ipv4")] IpCidr::Ipv4(_) => None, #[cfg(feature = "proto-ipv6")] IpCidr::Ipv6(a) => Some(a), }) { if !is_candidate_source_address(dst_addr, &addr.address()) { continue; } // Rule 1: prefer the address that is the same as the output destination address. if candidate.address() != *dst_addr && addr.address() == *dst_addr { candidate = addr; } // Rule 2: prefer appropriate scope. if (candidate.address().scope() as u8) < (addr.address().scope() as u8) { if (candidate.address().scope() as u8) < (dst_addr.scope() as u8) { candidate = addr; } } else if (addr.address().scope() as u8) > (dst_addr.scope() as u8) { candidate = addr; } // Rule 3: avoid deprecated addresses (TODO) // Rule 4: prefer home addresses (TODO) // Rule 5: prefer outgoing interfaces (TODO) // Rule 5.5: prefer addresses in a prefix advertises by the next-hop (TODO). // Rule 6: prefer matching label (TODO) // Rule 7: prefer temporary addresses (TODO) // Rule 8: use longest matching prefix if common_prefix_length(candidate, dst_addr) < common_prefix_length(addr, dst_addr) { candidate = addr; } } Some(candidate.address()) } #[cfg(test)] #[allow(unused)] // unused depending on which sockets are enabled pub(crate) fn set_now(&mut self, now: Instant) { self.now = now } #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] fn check_hardware_addr(addr: &HardwareAddress) { if !addr.is_unicast() { panic!("Hardware address {addr} is not unicast") } } fn check_ip_addrs(addrs: &[IpCidr]) { for cidr in addrs { if !cidr.address().is_unicast() && !cidr.address().is_unspecified() { panic!("IP address {} is not unicast", cidr.address()) } } } #[cfg(feature = "medium-ieee802154")] fn get_sequence_number(&mut self) -> u8 { let no = self.sequence_no; self.sequence_no = self.sequence_no.wrapping_add(1); no } #[cfg(feature = "proto-ipv4-fragmentation")] fn get_ipv4_ident(&mut self) -> u16 { let ipv4_id = self.ipv4_id; self.ipv4_id = self.ipv4_id.wrapping_add(1); ipv4_id } #[cfg(feature = "proto-sixlowpan-fragmentation")] fn get_sixlowpan_fragment_tag(&mut self) -> u16 { let tag = self.tag; self.tag = self.tag.wrapping_add(1); tag } /// Determine if the given `Ipv6Address` is the solicited node /// multicast address for a IPv6 addresses assigned to the interface. /// See [RFC 4291 § 2.7.1] for more details. /// /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1 #[cfg(feature = "proto-ipv6")] pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool { self.ip_addrs.iter().any(|cidr| { match *cidr { IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK => { // Take the lower order 24 bits of the IPv6 address and // append those bits to FF02:0:0:0:0:1:FF00::/104. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..] } _ => false, } }) } /// Check whether the interface has the given IP address assigned. fn has_ip_addr>(&self, addr: T) -> bool { let addr = addr.into(); self.ip_addrs.iter().any(|probe| probe.address() == addr) } /// Get the first IPv4 address of the interface. #[cfg(feature = "proto-ipv4")] pub fn ipv4_addr(&self) -> Option { self.ip_addrs.iter().find_map(|addr| match *addr { IpCidr::Ipv4(cidr) => Some(cidr.address()), #[allow(unreachable_patterns)] _ => None, }) } /// Get the first IPv6 address if present. #[cfg(feature = "proto-ipv6")] pub fn ipv6_addr(&self) -> Option { self.ip_addrs.iter().find_map(|addr| match *addr { IpCidr::Ipv6(cidr) => Some(cidr.address()), #[allow(unreachable_patterns)] _ => None, }) } /// Check whether the interface listens to given destination multicast IP address. /// /// If built without feature `proto-igmp` this function will /// always return `false` when using IPv4. fn has_multicast_group>(&self, addr: T) -> bool { match addr.into() { #[cfg(feature = "proto-igmp")] IpAddress::Ipv4(key) => { key == Ipv4Address::MULTICAST_ALL_SYSTEMS || self.ipv4_multicast_groups.get(&key).is_some() } #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(Ipv6Address::LINK_LOCAL_ALL_NODES) => true, #[cfg(feature = "proto-rpl")] IpAddress::Ipv6(Ipv6Address::LINK_LOCAL_ALL_RPL_NODES) => true, #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(addr) => self.ip_addrs.iter().any(|a| match a.address() { IpAddress::Ipv6(a) => a.solicited_node() == addr, #[allow(unreachable_patterns)] _ => false, }), #[allow(unreachable_patterns)] _ => false, } } #[cfg(feature = "medium-ip")] fn process_ip<'frame>( &mut self, sockets: &mut SocketSet, meta: PacketMeta, ip_payload: &'frame [u8], frag: &'frame mut FragmentsBuffer, ) -> Option> { match IpVersion::of_packet(ip_payload) { #[cfg(feature = "proto-ipv4")] Ok(IpVersion::Ipv4) => { let ipv4_packet = check!(Ipv4Packet::new_checked(ip_payload)); self.process_ipv4(sockets, meta, &ipv4_packet, frag) } #[cfg(feature = "proto-ipv6")] Ok(IpVersion::Ipv6) => { let ipv6_packet = check!(Ipv6Packet::new_checked(ip_payload)); self.process_ipv6(sockets, meta, &ipv6_packet) } // Drop all other traffic. _ => None, } } #[cfg(feature = "socket-raw")] fn raw_socket_filter( &mut self, sockets: &mut SocketSet, ip_repr: &IpRepr, ip_payload: &[u8], ) -> bool { let mut handled_by_raw_socket = false; // Pass every IP packet to all raw sockets we have registered. for raw_socket in sockets .items_mut() .filter_map(|i| raw::Socket::downcast_mut(&mut i.socket)) { if raw_socket.accepts(ip_repr) { raw_socket.process(self, ip_repr, ip_payload); handled_by_raw_socket = true; } } handled_by_raw_socket } /// Checks if an address is broadcast, taking into account ipv4 subnet-local /// broadcast addresses. pub(crate) fn is_broadcast(&self, address: &IpAddress) -> bool { match address { #[cfg(feature = "proto-ipv4")] IpAddress::Ipv4(address) => self.is_broadcast_v4(*address), #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(_) => false, } } /// Checks if an address is broadcast, taking into account ipv4 subnet-local /// broadcast addresses. #[cfg(feature = "proto-ipv4")] pub(crate) fn is_broadcast_v4(&self, address: Ipv4Address) -> bool { if address.is_broadcast() { return true; } self.ip_addrs .iter() .filter_map(|own_cidr| match own_cidr { IpCidr::Ipv4(own_ip) => Some(own_ip.broadcast()?), #[cfg(feature = "proto-ipv6")] IpCidr::Ipv6(_) => None, }) .any(|broadcast_address| address == broadcast_address) } /// Checks if an ipv4 address is unicast, taking into account subnet broadcast addresses #[cfg(feature = "proto-ipv4")] fn is_unicast_v4(&self, address: Ipv4Address) -> bool { address.is_unicast() && !self.is_broadcast_v4(address) } #[cfg(any(feature = "socket-udp", feature = "socket-dns"))] #[allow(clippy::too_many_arguments)] fn process_udp<'frame>( &mut self, sockets: &mut SocketSet, meta: PacketMeta, ip_repr: IpRepr, udp_repr: UdpRepr, handled_by_raw_socket: bool, udp_payload: &'frame [u8], ip_payload: &'frame [u8], ) -> Option> { #[cfg(feature = "socket-udp")] for udp_socket in sockets .items_mut() .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket)) { if udp_socket.accepts(self, &ip_repr, &udp_repr) { udp_socket.process(self, meta, &ip_repr, &udp_repr, udp_payload); return None; } } #[cfg(feature = "socket-dns")] for dns_socket in sockets .items_mut() .filter_map(|i| dns::Socket::downcast_mut(&mut i.socket)) { if dns_socket.accepts(&ip_repr, &udp_repr) { dns_socket.process(self, &ip_repr, &udp_repr, udp_payload); return None; } } // The packet wasn't handled by a socket, send an ICMP port unreachable packet. match ip_repr { #[cfg(feature = "proto-ipv4")] IpRepr::Ipv4(_) if handled_by_raw_socket => None, #[cfg(feature = "proto-ipv6")] IpRepr::Ipv6(_) if handled_by_raw_socket => None, #[cfg(feature = "proto-ipv4")] IpRepr::Ipv4(ipv4_repr) => { let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len()); let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: ipv4_repr, data: &ip_payload[0..payload_len], }; self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr) } #[cfg(feature = "proto-ipv6")] IpRepr::Ipv6(ipv6_repr) => { let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len()); let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable { reason: Icmpv6DstUnreachable::PortUnreachable, header: ipv6_repr, data: &ip_payload[0..payload_len], }; self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr) } } } #[cfg(feature = "socket-tcp")] pub(crate) fn process_tcp<'frame>( &mut self, sockets: &mut SocketSet, ip_repr: IpRepr, ip_payload: &'frame [u8], ) -> Option> { let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr()); let tcp_packet = check!(TcpPacket::new_checked(ip_payload)); let tcp_repr = check!(TcpRepr::parse( &tcp_packet, &src_addr, &dst_addr, &self.caps.checksum )); for tcp_socket in sockets .items_mut() .filter_map(|i| tcp::Socket::downcast_mut(&mut i.socket)) { if tcp_socket.accepts(self, &ip_repr, &tcp_repr) { return tcp_socket .process(self, &ip_repr, &tcp_repr) .map(|(ip, tcp)| Packet::new(ip, IpPayload::Tcp(tcp))); } } if tcp_repr.control == TcpControl::Rst || ip_repr.dst_addr().is_unspecified() || ip_repr.src_addr().is_unspecified() { // Never reply to a TCP RST packet with another TCP RST packet. We also never want to // send a TCP RST packet with unspecified addresses. None } else { // The packet wasn't handled by a socket, send a TCP RST packet. let (ip, tcp) = tcp::Socket::rst_reply(&ip_repr, &tcp_repr); Some(Packet::new(ip, IpPayload::Tcp(tcp))) } } #[cfg(feature = "medium-ethernet")] fn dispatch( &mut self, tx_token: Tx, packet: EthernetPacket, frag: &mut Fragmenter, ) -> Result<(), DispatchError> where Tx: TxToken, { match packet { #[cfg(feature = "proto-ipv4")] EthernetPacket::Arp(arp_repr) => { let dst_hardware_addr = match arp_repr { ArpRepr::EthernetIpv4 { target_hardware_addr, .. } => target_hardware_addr, }; self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| { frame.set_dst_addr(dst_hardware_addr); frame.set_ethertype(EthernetProtocol::Arp); let mut packet = ArpPacket::new_unchecked(frame.payload_mut()); arp_repr.emit(&mut packet); }) } EthernetPacket::Ip(packet) => { self.dispatch_ip(tx_token, PacketMeta::default(), packet, frag) } } } fn in_same_network(&self, addr: &IpAddress) -> bool { self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr)) } fn route(&self, addr: &IpAddress, timestamp: Instant) -> Option { // Send directly. // note: no need to use `self.is_broadcast()` to check for subnet-local broadcast addrs // here because `in_same_network` will already return true. if self.in_same_network(addr) || addr.is_broadcast() { return Some(*addr); } // Route via a router. self.routes.lookup(addr, timestamp) } fn has_neighbor(&self, addr: &IpAddress) -> bool { match self.route(addr, self.now) { Some(_routed_addr) => match self.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => self.neighbor_cache.lookup(&_routed_addr, self.now).found(), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => self.neighbor_cache.lookup(&_routed_addr, self.now).found(), #[cfg(feature = "medium-ip")] Medium::Ip => true, }, None => false, } } #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] fn lookup_hardware_addr( &mut self, tx_token: Tx, src_addr: &IpAddress, dst_addr: &IpAddress, fragmenter: &mut Fragmenter, ) -> Result<(HardwareAddress, Tx), DispatchError> where Tx: TxToken, { if self.is_broadcast(dst_addr) { let hardware_addr = match self.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST), #[cfg(feature = "medium-ip")] Medium::Ip => unreachable!(), }; return Ok((hardware_addr, tx_token)); } if dst_addr.is_multicast() { let b = dst_addr.as_bytes(); let hardware_addr = match *dst_addr { #[cfg(feature = "proto-ipv4")] IpAddress::Ipv4(_addr) => match self.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[ 0x01, 0x00, 0x5e, b[1] & 0x7F, b[2], b[3], ])), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => unreachable!(), #[cfg(feature = "medium-ip")] Medium::Ip => unreachable!(), }, #[cfg(feature = "proto-ipv6")] IpAddress::Ipv6(_addr) => match self.caps.medium { #[cfg(feature = "medium-ethernet")] Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[ 0x33, 0x33, b[12], b[13], b[14], b[15], ])), #[cfg(feature = "medium-ieee802154")] Medium::Ieee802154 => { // Not sure if this is correct HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST) } #[cfg(feature = "medium-ip")] Medium::Ip => unreachable!(), }, }; return Ok((hardware_addr, tx_token)); } let dst_addr = self .route(dst_addr, self.now) .ok_or(DispatchError::NoRoute)?; match self.neighbor_cache.lookup(&dst_addr, self.now) { NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)), NeighborAnswer::RateLimited => return Err(DispatchError::NeighborPending), _ => (), // XXX } match (src_addr, dst_addr) { #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))] (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) if matches!(self.caps.medium, Medium::Ethernet) => { net_debug!( "address {} not in neighbor cache, sending ARP request", dst_addr ); let src_hardware_addr = self.hardware_addr.ethernet_or_panic(); let arp_repr = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: src_hardware_addr, source_protocol_addr: src_addr, target_hardware_addr: EthernetAddress::BROADCAST, target_protocol_addr: dst_addr, }; if let Err(e) = self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| { frame.set_dst_addr(EthernetAddress::BROADCAST); frame.set_ethertype(EthernetProtocol::Arp); arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut())) }) { net_debug!("Failed to dispatch ARP request: {:?}", e); return Err(DispatchError::NeighborPending); } } #[cfg(feature = "proto-ipv6")] (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => { net_debug!( "address {} not in neighbor cache, sending Neighbor Solicitation", dst_addr ); let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit { target_addr: dst_addr, lladdr: Some(self.hardware_addr.into()), }); let packet = Packet::new_ipv6( Ipv6Repr { src_addr, dst_addr: dst_addr.solicited_node(), next_header: IpProtocol::Icmpv6, payload_len: solicit.buffer_len(), hop_limit: 0xff, }, IpPayload::Icmpv6(solicit), ); if let Err(e) = self.dispatch_ip(tx_token, PacketMeta::default(), packet, fragmenter) { net_debug!("Failed to dispatch NDISC solicit: {:?}", e); return Err(DispatchError::NeighborPending); } } #[allow(unreachable_patterns)] _ => (), } // The request got dispatched, limit the rate on the cache. self.neighbor_cache.limit_rate(self.now); Err(DispatchError::NeighborPending) } fn flush_cache(&mut self) { #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))] self.neighbor_cache.flush() } fn dispatch_ip( &mut self, // NOTE(unused_mut): tx_token isn't always mutated, depending on // the feature set that is used. #[allow(unused_mut)] mut tx_token: Tx, meta: PacketMeta, packet: Packet, frag: &mut Fragmenter, ) -> Result<(), DispatchError> { let mut ip_repr = packet.ip_repr(); assert!(!ip_repr.dst_addr().is_unspecified()); // Dispatch IEEE802.15.4: #[cfg(feature = "medium-ieee802154")] if matches!(self.caps.medium, Medium::Ieee802154) { let (addr, tx_token) = self.lookup_hardware_addr( tx_token, &ip_repr.src_addr(), &ip_repr.dst_addr(), frag, )?; let addr = addr.ieee802154_or_panic(); self.dispatch_ieee802154(addr, tx_token, meta, packet, frag); return Ok(()); } // Dispatch IP/Ethernet: let caps = self.caps.clone(); #[cfg(feature = "proto-ipv4-fragmentation")] let ipv4_id = self.get_ipv4_ident(); // First we calculate the total length that we will have to emit. let mut total_len = ip_repr.buffer_len(); // Add the size of the Ethernet header if the medium is Ethernet. #[cfg(feature = "medium-ethernet")] if matches!(self.caps.medium, Medium::Ethernet) { total_len = EthernetFrame::<&[u8]>::buffer_len(total_len); } // If the medium is Ethernet, then we need to retrieve the destination hardware address. #[cfg(feature = "medium-ethernet")] let (dst_hardware_addr, mut tx_token) = match self.caps.medium { Medium::Ethernet => { match self.lookup_hardware_addr( tx_token, &ip_repr.src_addr(), &ip_repr.dst_addr(), frag, )? { (HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token), (_, _) => unreachable!(), } } _ => (EthernetAddress([0; 6]), tx_token), }; // Emit function for the Ethernet header. #[cfg(feature = "medium-ethernet")] let emit_ethernet = |repr: &IpRepr, tx_buffer: &mut [u8]| { let mut frame = EthernetFrame::new_unchecked(tx_buffer); let src_addr = self.hardware_addr.ethernet_or_panic(); frame.set_src_addr(src_addr); frame.set_dst_addr(dst_hardware_addr); match repr.version() { #[cfg(feature = "proto-ipv4")] IpVersion::Ipv4 => frame.set_ethertype(EthernetProtocol::Ipv4), #[cfg(feature = "proto-ipv6")] IpVersion::Ipv6 => frame.set_ethertype(EthernetProtocol::Ipv6), } Ok(()) }; // Emit function for the IP header and payload. let emit_ip = |repr: &IpRepr, mut tx_buffer: &mut [u8]| { repr.emit(&mut tx_buffer, &self.caps.checksum); let payload = &mut tx_buffer[repr.header_len()..]; packet.emit_payload(repr, payload, &caps) }; let total_ip_len = ip_repr.buffer_len(); match &mut ip_repr { #[cfg(feature = "proto-ipv4")] IpRepr::Ipv4(repr) => { // If we have an IPv4 packet, then we need to check if we need to fragment it. if total_ip_len > self.caps.max_transmission_unit { #[cfg(feature = "proto-ipv4-fragmentation")] { net_debug!("start fragmentation"); // Calculate how much we will send now (including the Ethernet header). let tx_len = self.caps.max_transmission_unit; let ip_header_len = repr.buffer_len(); let first_frag_ip_len = self.caps.ip_mtu(); if frag.buffer.len() < total_ip_len { net_debug!( "Fragmentation buffer is too small, at least {} needed. Dropping", total_ip_len ); return Ok(()); } #[cfg(feature = "medium-ethernet")] { frag.ipv4.dst_hardware_addr = dst_hardware_addr; } // Save the total packet len (without the Ethernet header, but with the first // IP header). frag.packet_len = total_ip_len; // Save the IP header for other fragments. frag.ipv4.repr = *repr; // Save how much bytes we will send now. frag.sent_bytes = first_frag_ip_len; // Modify the IP header repr.payload_len = first_frag_ip_len - repr.buffer_len(); // Emit the IP header to the buffer. emit_ip(&ip_repr, &mut frag.buffer); let mut ipv4_packet = Ipv4Packet::new_unchecked(&mut frag.buffer[..]); frag.ipv4.ident = ipv4_id; ipv4_packet.set_ident(ipv4_id); ipv4_packet.set_more_frags(true); ipv4_packet.set_dont_frag(false); ipv4_packet.set_frag_offset(0); if caps.checksum.ipv4.tx() { ipv4_packet.fill_checksum(); } // Transmit the first packet. tx_token.consume(tx_len, |mut tx_buffer| { #[cfg(feature = "medium-ethernet")] if matches!(self.caps.medium, Medium::Ethernet) { emit_ethernet(&ip_repr, tx_buffer)?; tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..]; } // Change the offset for the next packet. frag.ipv4.frag_offset = (first_frag_ip_len - ip_header_len) as u16; // Copy the IP header and the payload. tx_buffer[..first_frag_ip_len] .copy_from_slice(&frag.buffer[..first_frag_ip_len]); Ok(()) }) } #[cfg(not(feature = "proto-ipv4-fragmentation"))] { net_debug!("Enable the `proto-ipv4-fragmentation` feature for fragmentation support."); Ok(()) } } else { tx_token.set_meta(meta); // No fragmentation is required. tx_token.consume(total_len, |mut tx_buffer| { #[cfg(feature = "medium-ethernet")] if matches!(self.caps.medium, Medium::Ethernet) { emit_ethernet(&ip_repr, tx_buffer)?; tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..]; } emit_ip(&ip_repr, tx_buffer); Ok(()) }) } } // We don't support IPv6 fragmentation yet. #[cfg(feature = "proto-ipv6")] IpRepr::Ipv6(_) => tx_token.consume(total_len, |mut tx_buffer| { #[cfg(feature = "medium-ethernet")] if matches!(self.caps.medium, Medium::Ethernet) { emit_ethernet(&ip_repr, tx_buffer)?; tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..]; } emit_ip(&ip_repr, tx_buffer); Ok(()) }), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] enum DispatchError { /// No route to dispatch this packet. Retrying won't help unless /// configuration is changed. NoRoute, /// We do have a route to dispatch this packet, but we haven't discovered /// the neighbor for it yet. Discovery has been initiated, dispatch /// should be retried later. NeighborPending, }