use managed::{Managed, ManagedSlice}; use Error; use phy::Device; use wire::{EthernetAddress, EthernetProtocol, EthernetFrame}; use wire::{ArpPacket, ArpRepr, ArpOperation}; use wire::{Ipv4Packet, Ipv4Repr}; use wire::{Icmpv4Packet, Icmpv4Repr, Icmpv4DstUnreachable}; use wire::{IpAddress, IpProtocol, IpRepr}; use wire::{TcpPacket, TcpRepr, TcpControl}; use socket::{Socket, SocketSet, RawSocket, TcpSocket, UdpSocket, AsSocket}; use super::ArpCache; /// An Ethernet network interface. /// /// The network interface logically owns a number of other data structures; to avoid /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be /// a `&mut [T]`, or `Vec` if a heap is available. pub struct Interface<'a, 'b, 'c, DeviceT: Device + 'a> { device: Managed<'a, DeviceT>, arp_cache: Managed<'b, ArpCache>, hardware_addr: EthernetAddress, protocol_addrs: ManagedSlice<'c, IpAddress>, } enum Response<'a> { Nop, Arp(ArpRepr), Icmpv4(Ipv4Repr, Icmpv4Repr<'a>), Tcpv4(Ipv4Repr, TcpRepr<'a>) } impl<'a, 'b, 'c, DeviceT: Device + 'a> Interface<'a, 'b, 'c, DeviceT> { /// Create a network interface using the provided network device. /// /// # Panics /// See the restrictions on [set_hardware_addr](#method.set_hardware_addr) /// and [set_protocol_addrs](#method.set_protocol_addrs) functions. pub fn new (device: DeviceMT, arp_cache: ArpCacheMT, hardware_addr: EthernetAddress, protocol_addrs: ProtocolAddrsMT) -> Interface<'a, 'b, 'c, DeviceT> where DeviceMT: Into>, ArpCacheMT: Into>, ProtocolAddrsMT: Into>, { let device = device.into(); let arp_cache = arp_cache.into(); let protocol_addrs = protocol_addrs.into(); Self::check_hardware_addr(&hardware_addr); Self::check_protocol_addrs(&protocol_addrs); Interface { device: device, arp_cache: arp_cache, hardware_addr: hardware_addr, protocol_addrs: protocol_addrs, } } fn check_hardware_addr(addr: &EthernetAddress) { if addr.is_multicast() { panic!("hardware address {} is not unicast", addr) } } /// Get the hardware address of the interface. pub fn hardware_addr(&self) -> EthernetAddress { self.hardware_addr } /// Set the hardware address of the interface. /// /// # Panics /// This function panics if the address is not unicast. pub fn set_hardware_addr(&mut self, addr: EthernetAddress) { self.hardware_addr = addr; Self::check_hardware_addr(&self.hardware_addr); } fn check_protocol_addrs(addrs: &[IpAddress]) { for addr in addrs { if !addr.is_unicast() { panic!("protocol address {} is not unicast", addr) } } } /// Get the protocol addresses of the interface. pub fn protocol_addrs(&self) -> &[IpAddress] { self.protocol_addrs.as_ref() } /// Update the protocol addresses of the interface. /// /// # Panics /// This function panics if any of the addresses is not unicast. pub fn update_protocol_addrs)>(&mut self, f: F) { f(&mut self.protocol_addrs); Self::check_protocol_addrs(&self.protocol_addrs) } /// Check whether the interface has the given protocol address assigned. pub fn has_protocol_addr>(&self, addr: T) -> bool { let addr = addr.into(); self.protocol_addrs.iter().any(|&probe| probe == addr) } /// Receive and process a packet, if available, and then transmit a packet, if necessary, /// handling the given set of sockets. /// /// The timestamp is a monotonically increasing number of milliseconds. pub fn poll(&mut self, sockets: &mut SocketSet, timestamp: u64) -> Result<(), Error> { // First, transmit any outgoing packets. loop { if self.emit(sockets, timestamp)? { break } } // Now, receive any incoming packets. let rx_buffer = self.device.receive()?; let eth_frame = EthernetFrame::new_checked(&rx_buffer)?; // Ignore any packets not directed to our hardware address. if !eth_frame.dst_addr().is_broadcast() && eth_frame.dst_addr() != self.hardware_addr { return Ok(()) } let response = match eth_frame.ethertype() { EthernetProtocol::Arp => self.process_arp(ð_frame)?, EthernetProtocol::Ipv4 => self.process_ipv4(sockets, timestamp, ð_frame)?, // Drop all other traffic. _ => return Err(Error::Unrecognized), }; self.send_response(response) } // Snoop all ARP traffic, and respond to ARP packets directed at us. fn process_arp<'frame, T: AsRef<[u8]>> (&mut self, eth_frame: &EthernetFrame<&'frame T>) -> Result, Error> { let arp_packet = ArpPacket::new_checked(eth_frame.payload())?; let arp_repr = ArpRepr::parse(&arp_packet)?; match arp_repr { // Respond to ARP requests aimed at us, and fill the ARP cache // from all ARP requests, including gratuitous. ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr, source_protocol_addr, target_protocol_addr, .. } => { if source_protocol_addr.is_unicast() && source_hardware_addr.is_unicast() { self.arp_cache.fill(&source_protocol_addr.into(), &source_hardware_addr); } if self.has_protocol_addr(target_protocol_addr) { Ok(Response::Arp(ArpRepr::EthernetIpv4 { operation: ArpOperation::Reply, source_hardware_addr: self.hardware_addr, source_protocol_addr: target_protocol_addr, target_hardware_addr: source_hardware_addr, target_protocol_addr: source_protocol_addr })) } else { Ok(Response::Nop) } } // Fill the ARP cache from gratuitous ARP replies. ArpRepr::EthernetIpv4 { operation: ArpOperation::Reply, source_hardware_addr, source_protocol_addr, .. } => { if source_protocol_addr.is_unicast() && source_hardware_addr.is_unicast() { self.arp_cache.fill(&source_protocol_addr.into(), &source_hardware_addr); } Ok(Response::Nop) } _ => Err(Error::Unrecognized) } } fn process_ipv4<'frame, T: AsRef<[u8]>> (&mut self, sockets: &mut SocketSet, timestamp: u64, eth_frame: &EthernetFrame<&'frame T>) -> Result, Error> { let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload())?; let ipv4_repr = Ipv4Repr::parse(&ipv4_packet)?; if ipv4_repr.src_addr.is_unicast() && eth_frame.src_addr().is_unicast() { // Fill the ARP cache from IP header of unicast frames. self.arp_cache.fill(&IpAddress::Ipv4(ipv4_repr.src_addr), ð_frame.src_addr()); } // Pass every IP packet to all raw sockets we have registered. let mut handled_by_raw_socket = false; for raw_socket in sockets.iter_mut().filter_map( >::try_as_socket) { match raw_socket.process(timestamp, &IpRepr::Ipv4(ipv4_repr), ipv4_packet.payload()) { Ok(()) => handled_by_raw_socket = true, Err(Error::Rejected) => (), _ => unreachable!(), } } if !self.has_protocol_addr(ipv4_repr.dst_addr) { // Ignore IP packets not directed at us. return Ok(Response::Nop) } match ipv4_repr.protocol { IpProtocol::Icmp => Self::process_icmpv4(ipv4_repr, ipv4_packet.payload()), IpProtocol::Tcp => Self::process_tcpv4(sockets, timestamp, ipv4_repr, ipv4_packet.payload()), IpProtocol::Udp => Self::process_udpv4(sockets, timestamp, ipv4_repr, ipv4_packet.payload()), _ => { if handled_by_raw_socket { Ok(Response::Nop) } else { let icmp_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: ipv4_repr, data: &ipv4_packet.payload()[0..8] }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_reply_repr.buffer_len() }; Ok(Response::Icmpv4(ipv4_reply_repr, icmp_reply_repr)) } } } } fn process_icmpv4<'frame>(ipv4_repr: Ipv4Repr, ip_payload: &'frame [u8]) -> Result, Error> { let icmp_packet = Icmpv4Packet::new_checked(ip_payload)?; let icmp_repr = Icmpv4Repr::parse(&icmp_packet)?; match icmp_repr { // Respond to echo requests. Icmpv4Repr::EchoRequest { ident, seq_no, data } => { let icmp_reply_repr = Icmpv4Repr::EchoReply { ident: ident, seq_no: seq_no, data: data }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_reply_repr.buffer_len() }; Ok(Response::Icmpv4(ipv4_reply_repr, icmp_reply_repr)) } // Ignore any echo replies. Icmpv4Repr::EchoReply { .. } => Ok(Response::Nop), // FIXME: do something correct here? _ => Err(Error::Unrecognized), } } fn process_tcpv4<'frame>(sockets: &mut SocketSet, timestamp: u64, ipv4_repr: Ipv4Repr, ip_payload: &'frame [u8]) -> Result, Error> { let ip_repr = IpRepr::Ipv4(ipv4_repr); for tcp_socket in sockets.iter_mut().filter_map( >::try_as_socket) { match tcp_socket.process(timestamp, &ip_repr, ip_payload) { // The packet was valid and handled by socket. Ok(()) => return Ok(Response::Nop), // The packet wasn't addressed to the socket. // Send RST only if no other socket accepts the packet. Err(Error::Rejected) => continue, // The packet was addressed to the socket but is malformed. Err(Error::Malformed) => break, Err(e) => return Err(e) } } // The packet wasn't handled by a socket, send a TCP RST packet. let tcp_packet = TcpPacket::new_checked(ip_payload)?; if tcp_packet.rst() { // Don't reply to a TCP RST packet with another TCP RST packet. return Ok(Response::Nop) } let tcp_reply_repr = TcpRepr { src_port: tcp_packet.dst_port(), dst_port: tcp_packet.src_port(), control: TcpControl::Rst, push: false, seq_number: tcp_packet.ack_number(), ack_number: Some(tcp_packet.seq_number() + tcp_packet.segment_len()), window_len: 0, max_seg_size: None, payload: &[] }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Tcp, payload_len: tcp_reply_repr.buffer_len() }; Ok(Response::Tcpv4(ipv4_reply_repr, tcp_reply_repr)) } fn process_udpv4<'frame>(sockets: &mut SocketSet, timestamp: u64, ipv4_repr: Ipv4Repr, ip_payload: &'frame [u8]) -> Result, Error> { let ip_repr = IpRepr::Ipv4(ipv4_repr); for udp_socket in sockets.iter_mut().filter_map( >::try_as_socket) { match udp_socket.process(timestamp, &ip_repr, ip_payload) { // The packet was valid and handled by socket. Ok(()) => return Ok(Response::Nop), // The packet wasn't addressed to the socket. Err(Error::Rejected) => continue, // The packet was addressed to the socket but is malformed. Err(Error::Malformed) => break, Err(e) => return Err(e) } } //The packet wasn't handled by a socket, send an ICMP port unreachable packet. let icmp_reply_repr = Icmpv4Repr::DstUnreachable { reason: Icmpv4DstUnreachable::PortUnreachable, header: ipv4_repr, data: &ip_payload[0..8] }; let ipv4_reply_repr = Ipv4Repr { src_addr: ipv4_repr.dst_addr, dst_addr: ipv4_repr.src_addr, protocol: IpProtocol::Icmp, payload_len: icmp_reply_repr.buffer_len() }; Ok(Response::Icmpv4(ipv4_reply_repr, icmp_reply_repr)) } fn send_response(&mut self, response: Response) -> Result<(), Error> { macro_rules! ip_response { ($tx_buffer:ident, $frame:ident, $ip_repr:ident) => ({ let dst_hardware_addr = match self.arp_cache.lookup(&$ip_repr.dst_addr.into()) { None => return Err(Error::Unaddressable), Some(hardware_addr) => hardware_addr }; let frame_len = EthernetFrame::<&[u8]>::buffer_len($ip_repr.buffer_len() + $ip_repr.payload_len); $tx_buffer = self.device.transmit(frame_len)?; $frame = EthernetFrame::new_checked(&mut $tx_buffer) .expect("transmit frame too small"); $frame.set_src_addr(self.hardware_addr); $frame.set_dst_addr(dst_hardware_addr); $frame.set_ethertype(EthernetProtocol::Ipv4); let mut ip_packet = Ipv4Packet::new($frame.payload_mut()); $ip_repr.emit(&mut ip_packet); ip_packet }) } match response { Response::Arp(repr) => { let tx_len = EthernetFrame::<&[u8]>::buffer_len(repr.buffer_len()); let mut tx_buffer = self.device.transmit(tx_len)?; let mut frame = EthernetFrame::new_checked(&mut tx_buffer) .expect("transmit frame too small"); frame.set_src_addr(self.hardware_addr); frame.set_dst_addr(match repr { ArpRepr::EthernetIpv4 { target_hardware_addr, .. } => target_hardware_addr, _ => unreachable!() }); frame.set_ethertype(EthernetProtocol::Arp); let mut packet = ArpPacket::new(frame.payload_mut()); repr.emit(&mut packet); Ok(()) }, Response::Icmpv4(ip_repr, icmp_repr) => { let mut tx_buffer; let mut frame; let mut ip_packet = ip_response!(tx_buffer, frame, ip_repr); let mut icmp_packet = Icmpv4Packet::new(ip_packet.payload_mut()); icmp_repr.emit(&mut icmp_packet); Ok(()) } Response::Tcpv4(ip_repr, tcp_repr) => { let mut tx_buffer; let mut frame; let mut ip_packet = ip_response!(tx_buffer, frame, ip_repr); let mut tcp_packet = TcpPacket::new(ip_packet.payload_mut()); tcp_repr.emit(&mut tcp_packet, &IpAddress::Ipv4(ip_repr.src_addr), &IpAddress::Ipv4(ip_repr.dst_addr)); Ok(()) } Response::Nop => { Ok(()) } } } fn emit(&mut self, sockets: &mut SocketSet, timestamp: u64) -> Result { // Borrow checker is being overly careful around closures, so we have // to hack around that. let src_hardware_addr = self.hardware_addr; let src_protocol_addrs = self.protocol_addrs.as_ref(); let arp_cache = &mut self.arp_cache; let device = &mut self.device; let mut limits = device.limits(); limits.max_transmission_unit -= EthernetFrame::<&[u8]>::header_len(); let mut nothing_to_transmit = true; for socket in sockets.iter_mut() { let result = socket.dispatch(timestamp, &limits, &mut |repr, payload| { let repr = repr.lower(src_protocol_addrs)?; match arp_cache.lookup(&repr.dst_addr()) { Some(dst_hardware_addr) => { let tx_len = EthernetFrame::<&[u8]>::buffer_len(repr.buffer_len() + payload.buffer_len()); let mut tx_buffer = device.transmit(tx_len)?; let mut frame = EthernetFrame::new_checked(&mut tx_buffer) .expect("transmit frame too small"); frame.set_src_addr(src_hardware_addr); frame.set_dst_addr(dst_hardware_addr); frame.set_ethertype(EthernetProtocol::Ipv4); repr.emit(frame.payload_mut()); let mut ip_packet = Ipv4Packet::new(frame.payload_mut()); payload.emit(&repr, ip_packet.payload_mut()); } None => { let (src_addr, dst_addr) = match (repr.src_addr(), repr.dst_addr()) { (IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => (src_addr, dst_addr), // We've lowered all addresses to a concrete form. _ => unreachable!() }; let payload = ArpRepr::EthernetIpv4 { operation: ArpOperation::Request, source_hardware_addr: src_hardware_addr, source_protocol_addr: src_addr, target_hardware_addr: EthernetAddress::default(), target_protocol_addr: dst_addr, }; let tx_len = EthernetFrame::<&[u8]>::buffer_len(payload.buffer_len()); let mut tx_buffer = device.transmit(tx_len)?; let mut frame = EthernetFrame::new_checked(&mut tx_buffer) .expect("transmit frame too small"); frame.set_src_addr(src_hardware_addr); frame.set_dst_addr(EthernetAddress([0xff; 6])); frame.set_ethertype(EthernetProtocol::Arp); let mut arp_packet = ArpPacket::new(frame.payload_mut()); payload.emit(&mut arp_packet); } } Ok(()) }); match result { Ok(()) => { nothing_to_transmit = false; break } Err(Error::Exhausted) => continue, Err(e) => return Err(e) } } Ok(nothing_to_transmit) } }