use core::cmp::min; #[cfg(feature = "async")] use core::task::Waker; use crate::iface::Context; use crate::phy::PacketMeta; use crate::socket::PollAt; #[cfg(feature = "async")] use crate::socket::WakerRegistration; use crate::storage::Empty; use crate::wire::{IpAddress, IpEndpoint, IpListenEndpoint, IpProtocol, IpRepr, UdpRepr}; /// Metadata for a sent or received UDP packet. #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[derive(Debug, PartialEq, Eq, Clone, Copy)] pub struct UdpMetadata { pub endpoint: IpEndpoint, /// The IP address to which an incoming datagram was sent, or to which an outgoing datagram /// will be sent. Incoming datagrams always have this set. On outgoing datagrams, if it is not /// set, and the socket is not bound to a single address anyway, a suitable address will be /// determined using the algorithms of RFC 6724 (candidate source address selection) or some /// heuristic (for IPv4). pub local_address: Option, pub meta: PacketMeta, } impl> From for UdpMetadata { fn from(value: T) -> Self { Self { endpoint: value.into(), local_address: None, meta: PacketMeta::default(), } } } impl core::fmt::Display for UdpMetadata { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { #[cfg(feature = "packetmeta-id")] return write!(f, "{}, PacketID: {:?}", self.endpoint, self.meta); #[cfg(not(feature = "packetmeta-id"))] write!(f, "{}", self.endpoint) } } /// A UDP packet metadata. pub type PacketMetadata = crate::storage::PacketMetadata; /// A UDP packet ring buffer. pub type PacketBuffer<'a> = crate::storage::PacketBuffer<'a, UdpMetadata>; /// Error returned by [`Socket::bind`] #[derive(Debug, PartialEq, Eq, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum BindError { InvalidState, Unaddressable, } impl core::fmt::Display for BindError { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { match self { BindError::InvalidState => write!(f, "invalid state"), BindError::Unaddressable => write!(f, "unaddressable"), } } } #[cfg(feature = "std")] impl std::error::Error for BindError {} /// Error returned by [`Socket::send`] #[derive(Debug, PartialEq, Eq, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum SendError { Unaddressable, BufferFull, } impl core::fmt::Display for SendError { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { match self { SendError::Unaddressable => write!(f, "unaddressable"), SendError::BufferFull => write!(f, "buffer full"), } } } #[cfg(feature = "std")] impl std::error::Error for SendError {} /// Error returned by [`Socket::recv`] #[derive(Debug, PartialEq, Eq, Clone, Copy)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum RecvError { Exhausted, Truncated, } impl core::fmt::Display for RecvError { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { match self { RecvError::Exhausted => write!(f, "exhausted"), RecvError::Truncated => write!(f, "truncated"), } } } #[cfg(feature = "std")] impl std::error::Error for RecvError {} /// A User Datagram Protocol socket. /// /// A UDP socket is bound to a specific endpoint, and owns transmit and receive /// packet buffers. #[derive(Debug)] pub struct Socket<'a> { endpoint: IpListenEndpoint, rx_buffer: PacketBuffer<'a>, tx_buffer: PacketBuffer<'a>, /// The time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. hop_limit: Option, #[cfg(feature = "async")] rx_waker: WakerRegistration, #[cfg(feature = "async")] tx_waker: WakerRegistration, } impl<'a> Socket<'a> { /// Create an UDP socket with the given buffers. pub fn new(rx_buffer: PacketBuffer<'a>, tx_buffer: PacketBuffer<'a>) -> Socket<'a> { Socket { endpoint: IpListenEndpoint::default(), rx_buffer, tx_buffer, hop_limit: None, #[cfg(feature = "async")] rx_waker: WakerRegistration::new(), #[cfg(feature = "async")] tx_waker: WakerRegistration::new(), } } /// Register a waker for receive operations. /// /// The waker is woken on state changes that might affect the return value /// of `recv` method calls, such as receiving data, or the socket closing. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. /// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `recv` has /// necessarily changed. #[cfg(feature = "async")] pub fn register_recv_waker(&mut self, waker: &Waker) { self.rx_waker.register(waker) } /// Register a waker for send operations. /// /// The waker is woken on state changes that might affect the return value /// of `send` method calls, such as space becoming available in the transmit /// buffer, or the socket closing. /// /// Notes: /// /// - Only one waker can be registered at a time. If another waker was previously registered, /// it is overwritten and will no longer be woken. /// - The Waker is woken only once. Once woken, you must register it again to receive more wakes. /// - "Spurious wakes" are allowed: a wake doesn't guarantee the result of `send` has /// necessarily changed. #[cfg(feature = "async")] pub fn register_send_waker(&mut self, waker: &Waker) { self.tx_waker.register(waker) } /// Return the bound endpoint. #[inline] pub fn endpoint(&self) -> IpListenEndpoint { self.endpoint } /// Return the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. /// /// See also the [set_hop_limit](#method.set_hop_limit) method pub fn hop_limit(&self) -> Option { self.hop_limit } /// Set the time-to-live (IPv4) or hop limit (IPv6) value used in outgoing packets. /// /// A socket without an explicitly set hop limit value uses the default [IANA recommended] /// value (64). /// /// # Panics /// /// This function panics if a hop limit value of 0 is given. See [RFC 1122 § 3.2.1.7]. /// /// [IANA recommended]: https://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml /// [RFC 1122 § 3.2.1.7]: https://tools.ietf.org/html/rfc1122#section-3.2.1.7 pub fn set_hop_limit(&mut self, hop_limit: Option) { // A host MUST NOT send a datagram with a hop limit value of 0 if let Some(0) = hop_limit { panic!("the time-to-live value of a packet must not be zero") } self.hop_limit = hop_limit } /// Bind the socket to the given endpoint. /// /// This function returns `Err(Error::Illegal)` if the socket was open /// (see [is_open](#method.is_open)), and `Err(Error::Unaddressable)` /// if the port in the given endpoint is zero. pub fn bind>(&mut self, endpoint: T) -> Result<(), BindError> { let endpoint = endpoint.into(); if endpoint.port == 0 { return Err(BindError::Unaddressable); } if self.is_open() { return Err(BindError::InvalidState); } self.endpoint = endpoint; #[cfg(feature = "async")] { self.rx_waker.wake(); self.tx_waker.wake(); } Ok(()) } /// Close the socket. pub fn close(&mut self) { // Clear the bound endpoint of the socket. self.endpoint = IpListenEndpoint::default(); // Reset the RX and TX buffers of the socket. self.tx_buffer.reset(); self.rx_buffer.reset(); #[cfg(feature = "async")] { self.rx_waker.wake(); self.tx_waker.wake(); } } /// Check whether the socket is open. #[inline] pub fn is_open(&self) -> bool { self.endpoint.port != 0 } /// Check whether the transmit buffer is full. #[inline] pub fn can_send(&self) -> bool { !self.tx_buffer.is_full() } /// Check whether the receive buffer is not empty. #[inline] pub fn can_recv(&self) -> bool { !self.rx_buffer.is_empty() } /// Return the maximum number packets the socket can receive. #[inline] pub fn packet_recv_capacity(&self) -> usize { self.rx_buffer.packet_capacity() } /// Return the maximum number packets the socket can transmit. #[inline] pub fn packet_send_capacity(&self) -> usize { self.tx_buffer.packet_capacity() } /// Return the maximum number of bytes inside the recv buffer. #[inline] pub fn payload_recv_capacity(&self) -> usize { self.rx_buffer.payload_capacity() } /// Return the maximum number of bytes inside the transmit buffer. #[inline] pub fn payload_send_capacity(&self) -> usize { self.tx_buffer.payload_capacity() } /// Enqueue a packet to be sent to a given remote endpoint, and return a pointer /// to its payload. /// /// This function returns `Err(Error::Exhausted)` if the transmit buffer is full, /// `Err(Error::Unaddressable)` if local or remote port, or remote address are unspecified, /// and `Err(Error::Truncated)` if there is not enough transmit buffer capacity /// to ever send this packet. pub fn send( &mut self, size: usize, meta: impl Into, ) -> Result<&mut [u8], SendError> { let meta = meta.into(); if self.endpoint.port == 0 { return Err(SendError::Unaddressable); } if meta.endpoint.addr.is_unspecified() { return Err(SendError::Unaddressable); } if meta.endpoint.port == 0 { return Err(SendError::Unaddressable); } let payload_buf = self .tx_buffer .enqueue(size, meta) .map_err(|_| SendError::BufferFull)?; net_trace!( "udp:{}:{}: buffer to send {} octets", self.endpoint, meta.endpoint, size ); Ok(payload_buf) } /// Enqueue a packet to be send to a given remote endpoint and pass the buffer /// to the provided closure. The closure then returns the size of the data written /// into the buffer. /// /// Also see [send](#method.send). pub fn send_with( &mut self, max_size: usize, meta: impl Into, f: F, ) -> Result where F: FnOnce(&mut [u8]) -> usize, { let meta = meta.into(); if self.endpoint.port == 0 { return Err(SendError::Unaddressable); } if meta.endpoint.addr.is_unspecified() { return Err(SendError::Unaddressable); } if meta.endpoint.port == 0 { return Err(SendError::Unaddressable); } let size = self .tx_buffer .enqueue_with_infallible(max_size, meta, f) .map_err(|_| SendError::BufferFull)?; net_trace!( "udp:{}:{}: buffer to send {} octets", self.endpoint, meta.endpoint, size ); Ok(size) } /// Enqueue a packet to be sent to a given remote endpoint, and fill it from a slice. /// /// See also [send](#method.send). pub fn send_slice( &mut self, data: &[u8], meta: impl Into, ) -> Result<(), SendError> { self.send(data.len(), meta)?.copy_from_slice(data); Ok(()) } /// Dequeue a packet received from a remote endpoint, and return the endpoint as well /// as a pointer to the payload. /// /// This function returns `Err(Error::Exhausted)` if the receive buffer is empty. pub fn recv(&mut self) -> Result<(&[u8], UdpMetadata), RecvError> { let (remote_endpoint, payload_buf) = self.rx_buffer.dequeue().map_err(|_| RecvError::Exhausted)?; net_trace!( "udp:{}:{}: receive {} buffered octets", self.endpoint, remote_endpoint.endpoint, payload_buf.len() ); Ok((payload_buf, remote_endpoint)) } /// Dequeue a packet received from a remote endpoint, copy the payload into the given slice, /// and return the amount of octets copied as well as the endpoint. /// /// **Note**: when the size of the provided buffer is smaller than the size of the payload, /// the packet is dropped and a `RecvError::Truncated` error is returned. /// /// See also [recv](#method.recv). pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<(usize, UdpMetadata), RecvError> { let (buffer, endpoint) = self.recv().map_err(|_| RecvError::Exhausted)?; if data.len() < buffer.len() { return Err(RecvError::Truncated); } let length = min(data.len(), buffer.len()); data[..length].copy_from_slice(&buffer[..length]); Ok((length, endpoint)) } /// Peek at a packet received from a remote endpoint, and return the endpoint as well /// as a pointer to the payload without removing the packet from the receive buffer. /// This function otherwise behaves identically to [recv](#method.recv). /// /// It returns `Err(Error::Exhausted)` if the receive buffer is empty. pub fn peek(&mut self) -> Result<(&[u8], &UdpMetadata), RecvError> { let endpoint = self.endpoint; self.rx_buffer.peek().map_err(|_| RecvError::Exhausted).map( |(remote_endpoint, payload_buf)| { net_trace!( "udp:{}:{}: peek {} buffered octets", endpoint, remote_endpoint.endpoint, payload_buf.len() ); (payload_buf, remote_endpoint) }, ) } /// Peek at a packet received from a remote endpoint, copy the payload into the given slice, /// and return the amount of octets copied as well as the endpoint without removing the /// packet from the receive buffer. /// This function otherwise behaves identically to [recv_slice](#method.recv_slice). /// /// **Note**: when the size of the provided buffer is smaller than the size of the payload, /// no data is copied into the provided buffer and a `RecvError::Truncated` error is returned. /// /// See also [peek](#method.peek). pub fn peek_slice(&mut self, data: &mut [u8]) -> Result<(usize, &UdpMetadata), RecvError> { let (buffer, endpoint) = self.peek()?; if data.len() < buffer.len() { return Err(RecvError::Truncated); } let length = min(data.len(), buffer.len()); data[..length].copy_from_slice(&buffer[..length]); Ok((length, endpoint)) } pub(crate) fn accepts(&self, cx: &mut Context, ip_repr: &IpRepr, repr: &UdpRepr) -> bool { if self.endpoint.port != repr.dst_port { return false; } if self.endpoint.addr.is_some() && self.endpoint.addr != Some(ip_repr.dst_addr()) && !cx.is_broadcast(&ip_repr.dst_addr()) && !ip_repr.dst_addr().is_multicast() { return false; } true } pub(crate) fn process( &mut self, cx: &mut Context, meta: PacketMeta, ip_repr: &IpRepr, repr: &UdpRepr, payload: &[u8], ) { debug_assert!(self.accepts(cx, ip_repr, repr)); let size = payload.len(); let remote_endpoint = IpEndpoint { addr: ip_repr.src_addr(), port: repr.src_port, }; net_trace!( "udp:{}:{}: receiving {} octets", self.endpoint, remote_endpoint, size ); let metadata = UdpMetadata { endpoint: remote_endpoint, local_address: Some(ip_repr.dst_addr()), meta, }; match self.rx_buffer.enqueue(size, metadata) { Ok(buf) => buf.copy_from_slice(payload), Err(_) => net_trace!( "udp:{}:{}: buffer full, dropped incoming packet", self.endpoint, remote_endpoint ), } #[cfg(feature = "async")] self.rx_waker.wake(); } pub(crate) fn dispatch(&mut self, cx: &mut Context, emit: F) -> Result<(), E> where F: FnOnce(&mut Context, PacketMeta, (IpRepr, UdpRepr, &[u8])) -> Result<(), E>, { let endpoint = self.endpoint; let hop_limit = self.hop_limit.unwrap_or(64); let res = self.tx_buffer.dequeue_with(|packet_meta, payload_buf| { let src_addr = if let Some(s) = packet_meta.local_address { s } else { match endpoint.addr { Some(addr) => addr, None => match cx.get_source_address(&packet_meta.endpoint.addr) { Some(addr) => addr, None => { net_trace!( "udp:{}:{}: cannot find suitable source address, dropping.", endpoint, packet_meta.endpoint ); return Ok(()); } }, } }; net_trace!( "udp:{}:{}: sending {} octets", endpoint, packet_meta.endpoint, payload_buf.len() ); let repr = UdpRepr { src_port: endpoint.port, dst_port: packet_meta.endpoint.port, }; let ip_repr = IpRepr::new( src_addr, packet_meta.endpoint.addr, IpProtocol::Udp, repr.header_len() + payload_buf.len(), hop_limit, ); emit(cx, packet_meta.meta, (ip_repr, repr, payload_buf)) }); match res { Err(Empty) => Ok(()), Ok(Err(e)) => Err(e), Ok(Ok(())) => { #[cfg(feature = "async")] self.tx_waker.wake(); Ok(()) } } } pub(crate) fn poll_at(&self, _cx: &mut Context) -> PollAt { if self.tx_buffer.is_empty() { PollAt::Ingress } else { PollAt::Now } } } #[cfg(test)] mod test { use super::*; use crate::wire::{IpRepr, UdpRepr}; use crate::phy::Medium; use crate::tests::setup; use rstest::*; fn buffer(packets: usize) -> PacketBuffer<'static> { PacketBuffer::new( (0..packets) .map(|_| PacketMetadata::EMPTY) .collect::>(), vec![0; 16 * packets], ) } fn socket( rx_buffer: PacketBuffer<'static>, tx_buffer: PacketBuffer<'static>, ) -> Socket<'static> { Socket::new(rx_buffer, tx_buffer) } const LOCAL_PORT: u16 = 53; const REMOTE_PORT: u16 = 49500; cfg_if::cfg_if! { if #[cfg(feature = "proto-ipv4")] { use crate::wire::Ipv4Address as IpvXAddress; use crate::wire::Ipv4Repr as IpvXRepr; use IpRepr::Ipv4 as IpReprIpvX; const LOCAL_ADDR: IpvXAddress = IpvXAddress([192, 168, 1, 1]); const REMOTE_ADDR: IpvXAddress = IpvXAddress([192, 168, 1, 2]); const OTHER_ADDR: IpvXAddress = IpvXAddress([192, 168, 1, 3]); } else { use crate::wire::Ipv6Address as IpvXAddress; use crate::wire::Ipv6Repr as IpvXRepr; use IpRepr::Ipv6 as IpReprIpvX; const LOCAL_ADDR: IpvXAddress = IpvXAddress([ 0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ]); const REMOTE_ADDR: IpvXAddress = IpvXAddress([ 0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, ]); const OTHER_ADDR: IpvXAddress = IpvXAddress([ 0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, ]); } } pub const LOCAL_END: IpEndpoint = IpEndpoint { addr: LOCAL_ADDR.into_address(), port: LOCAL_PORT, }; pub const REMOTE_END: IpEndpoint = IpEndpoint { addr: REMOTE_ADDR.into_address(), port: REMOTE_PORT, }; fn remote_metadata_with_local() -> UdpMetadata { // Would be great as a const once we have const `.into()`. UdpMetadata { local_address: Some(LOCAL_ADDR.into()), ..REMOTE_END.into() } } pub const LOCAL_IP_REPR: IpRepr = IpReprIpvX(IpvXRepr { src_addr: LOCAL_ADDR, dst_addr: REMOTE_ADDR, next_header: IpProtocol::Udp, payload_len: 8 + 6, hop_limit: 64, }); pub const REMOTE_IP_REPR: IpRepr = IpReprIpvX(IpvXRepr { src_addr: REMOTE_ADDR, dst_addr: LOCAL_ADDR, next_header: IpProtocol::Udp, payload_len: 8 + 6, hop_limit: 64, }); pub const BAD_IP_REPR: IpRepr = IpReprIpvX(IpvXRepr { src_addr: REMOTE_ADDR, dst_addr: OTHER_ADDR, next_header: IpProtocol::Udp, payload_len: 8 + 6, hop_limit: 64, }); const LOCAL_UDP_REPR: UdpRepr = UdpRepr { src_port: LOCAL_PORT, dst_port: REMOTE_PORT, }; const REMOTE_UDP_REPR: UdpRepr = UdpRepr { src_port: REMOTE_PORT, dst_port: LOCAL_PORT, }; const PAYLOAD: &[u8] = b"abcdef"; #[test] fn test_bind_unaddressable() { let mut socket = socket(buffer(0), buffer(0)); assert_eq!(socket.bind(0), Err(BindError::Unaddressable)); } #[test] fn test_bind_twice() { let mut socket = socket(buffer(0), buffer(0)); assert_eq!(socket.bind(1), Ok(())); assert_eq!(socket.bind(2), Err(BindError::InvalidState)); } #[test] #[should_panic(expected = "the time-to-live value of a packet must not be zero")] fn test_set_hop_limit_zero() { let mut s = socket(buffer(0), buffer(1)); s.set_hop_limit(Some(0)); } #[test] fn test_send_unaddressable() { let mut socket = socket(buffer(0), buffer(1)); assert_eq!( socket.send_slice(b"abcdef", REMOTE_END), Err(SendError::Unaddressable) ); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); assert_eq!( socket.send_slice( b"abcdef", IpEndpoint { addr: IpvXAddress::UNSPECIFIED.into(), ..REMOTE_END } ), Err(SendError::Unaddressable) ); assert_eq!( socket.send_slice( b"abcdef", IpEndpoint { port: 0, ..REMOTE_END } ), Err(SendError::Unaddressable) ); assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(())); } #[test] fn test_send_with_source() { let mut socket = socket(buffer(0), buffer(1)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); assert_eq!( socket.send_slice(b"abcdef", remote_metadata_with_local()), Ok(()) ); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_send_dispatch(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut socket = socket(buffer(0), buffer(1)); assert_eq!(socket.bind(LOCAL_END), Ok(())); assert!(socket.can_send()); assert_eq!( socket.dispatch(cx, |_, _, _| unreachable!()), Ok::<_, ()>(()) ); assert_eq!(socket.send_slice(b"abcdef", REMOTE_END), Ok(())); assert_eq!( socket.send_slice(b"123456", REMOTE_END), Err(SendError::BufferFull) ); assert!(!socket.can_send()); assert_eq!( socket.dispatch(cx, |_, _, (ip_repr, udp_repr, payload)| { assert_eq!(ip_repr, LOCAL_IP_REPR); assert_eq!(udp_repr, LOCAL_UDP_REPR); assert_eq!(payload, PAYLOAD); Err(()) }), Err(()) ); assert!(!socket.can_send()); assert_eq!( socket.dispatch(cx, |_, _, (ip_repr, udp_repr, payload)| { assert_eq!(ip_repr, LOCAL_IP_REPR); assert_eq!(udp_repr, LOCAL_UDP_REPR); assert_eq!(payload, PAYLOAD); Ok::<_, ()>(()) }), Ok(()) ); assert!(socket.can_send()); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_recv_process(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut socket = socket(buffer(1), buffer(0)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); assert!(!socket.can_recv()); assert_eq!(socket.recv(), Err(RecvError::Exhausted)); assert!(socket.accepts(cx, &REMOTE_IP_REPR, &REMOTE_UDP_REPR)); socket.process( cx, PacketMeta::default(), &REMOTE_IP_REPR, &REMOTE_UDP_REPR, PAYLOAD, ); assert!(socket.can_recv()); assert!(socket.accepts(cx, &REMOTE_IP_REPR, &REMOTE_UDP_REPR)); socket.process( cx, PacketMeta::default(), &REMOTE_IP_REPR, &REMOTE_UDP_REPR, PAYLOAD, ); assert_eq!( socket.recv(), Ok((&b"abcdef"[..], remote_metadata_with_local())) ); assert!(!socket.can_recv()); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_peek_process(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut socket = socket(buffer(1), buffer(0)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); assert_eq!(socket.peek(), Err(RecvError::Exhausted)); socket.process( cx, PacketMeta::default(), &REMOTE_IP_REPR, &REMOTE_UDP_REPR, PAYLOAD, ); assert_eq!( socket.peek(), Ok((&b"abcdef"[..], &remote_metadata_with_local(),)) ); assert_eq!( socket.recv(), Ok((&b"abcdef"[..], remote_metadata_with_local(),)) ); assert_eq!(socket.peek(), Err(RecvError::Exhausted)); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_recv_truncated_slice(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut socket = socket(buffer(1), buffer(0)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); assert!(socket.accepts(cx, &REMOTE_IP_REPR, &REMOTE_UDP_REPR)); socket.process( cx, PacketMeta::default(), &REMOTE_IP_REPR, &REMOTE_UDP_REPR, PAYLOAD, ); let mut slice = [0; 4]; assert_eq!(socket.recv_slice(&mut slice[..]), Err(RecvError::Truncated)); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_peek_truncated_slice(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut socket = socket(buffer(1), buffer(0)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); socket.process( cx, PacketMeta::default(), &REMOTE_IP_REPR, &REMOTE_UDP_REPR, PAYLOAD, ); let mut slice = [0; 4]; assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Truncated)); assert_eq!(socket.recv_slice(&mut slice[..]), Err(RecvError::Truncated)); assert_eq!(socket.peek_slice(&mut slice[..]), Err(RecvError::Exhausted)); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_set_hop_limit(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut s = socket(buffer(0), buffer(1)); assert_eq!(s.bind(LOCAL_END), Ok(())); s.set_hop_limit(Some(0x2a)); assert_eq!(s.send_slice(b"abcdef", REMOTE_END), Ok(())); assert_eq!( s.dispatch(cx, |_, _, (ip_repr, _, _)| { assert_eq!( ip_repr, IpReprIpvX(IpvXRepr { src_addr: LOCAL_ADDR, dst_addr: REMOTE_ADDR, next_header: IpProtocol::Udp, payload_len: 8 + 6, hop_limit: 0x2a, }) ); Ok::<_, ()>(()) }), Ok(()) ); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_doesnt_accept_wrong_port(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut socket = socket(buffer(1), buffer(0)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); let mut udp_repr = REMOTE_UDP_REPR; assert!(socket.accepts(cx, &REMOTE_IP_REPR, &udp_repr)); udp_repr.dst_port += 1; assert!(!socket.accepts(cx, &REMOTE_IP_REPR, &udp_repr)); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_doesnt_accept_wrong_ip(#[case] medium: Medium) { let (mut iface, _, _) = setup(medium); let cx = iface.context(); let mut port_bound_socket = socket(buffer(1), buffer(0)); assert_eq!(port_bound_socket.bind(LOCAL_PORT), Ok(())); assert!(port_bound_socket.accepts(cx, &BAD_IP_REPR, &REMOTE_UDP_REPR)); let mut ip_bound_socket = socket(buffer(1), buffer(0)); assert_eq!(ip_bound_socket.bind(LOCAL_END), Ok(())); assert!(!ip_bound_socket.accepts(cx, &BAD_IP_REPR, &REMOTE_UDP_REPR)); } #[test] fn test_send_large_packet() { // buffer(4) creates a payload buffer of size 16*4 let mut socket = socket(buffer(0), buffer(4)); assert_eq!(socket.bind(LOCAL_END), Ok(())); let too_large = b"0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdefx"; assert_eq!( socket.send_slice(too_large, REMOTE_END), Err(SendError::BufferFull) ); assert_eq!(socket.send_slice(&too_large[..16 * 4], REMOTE_END), Ok(())); } #[rstest] #[case::ip(Medium::Ip)] #[cfg(feature = "medium-ip")] #[case::ethernet(Medium::Ethernet)] #[cfg(feature = "medium-ethernet")] #[case::ieee802154(Medium::Ieee802154)] #[cfg(feature = "medium-ieee802154")] fn test_process_empty_payload(#[case] medium: Medium) { let meta = Box::leak(Box::new([PacketMetadata::EMPTY])); let recv_buffer = PacketBuffer::new(&mut meta[..], vec![]); let mut socket = socket(recv_buffer, buffer(0)); let (mut iface, _, _) = setup(medium); let cx = iface.context(); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); let repr = UdpRepr { src_port: REMOTE_PORT, dst_port: LOCAL_PORT, }; socket.process(cx, PacketMeta::default(), &REMOTE_IP_REPR, &repr, &[]); assert_eq!(socket.recv(), Ok((&[][..], remote_metadata_with_local()))); } #[test] fn test_closing() { let meta = Box::leak(Box::new([PacketMetadata::EMPTY])); let recv_buffer = PacketBuffer::new(&mut meta[..], vec![]); let mut socket = socket(recv_buffer, buffer(0)); assert_eq!(socket.bind(LOCAL_PORT), Ok(())); assert!(socket.is_open()); socket.close(); assert!(!socket.is_open()); } }