#![no_main] use libfuzzer_sys::fuzz_target; use smoltcp::iface::{InterfaceBuilder, NeighborCache}; use smoltcp::phy::{Loopback, Medium}; use smoltcp::socket::tcp; use smoltcp::time::{Duration, Instant}; use smoltcp::wire::{EthernetAddress, EthernetFrame, EthernetProtocol}; use smoltcp::wire::{IpAddress, IpCidr, Ipv4Packet, Ipv6Packet, TcpPacket}; use std::cmp; #[path = "../utils.rs"] mod utils; mod mock { use smoltcp::time::{Duration, Instant}; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Arc; // should be AtomicU64 but that's unstable #[derive(Debug, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct Clock(Arc); impl Clock { pub fn new() -> Clock { Clock(Arc::new(AtomicUsize::new(0))) } pub fn advance(&self, duration: Duration) { self.0 .fetch_add(duration.total_millis() as usize, Ordering::SeqCst); } pub fn elapsed(&self) -> Instant { Instant::from_millis(self.0.load(Ordering::SeqCst) as i64) } } } struct TcpHeaderFuzzer([u8; 56], usize); impl TcpHeaderFuzzer { // The fuzzer won't fuzz any packets with the SYN flag set in order to make sure the connection // is established before the fuzzed headers arrive. // // It will also not fuzz the source and dest port so it reaches the open socket. // // Otherwise, it replaces the entire rest of the TCP header with the fuzzer's output. pub fn new(data: &[u8]) -> TcpHeaderFuzzer { let copy_len = cmp::min( data.len(), 56, /* max TCP header length without port numbers*/ ); let mut fuzzer = TcpHeaderFuzzer([0; 56], copy_len); fuzzer.0[..copy_len].copy_from_slice(&data[..copy_len]); fuzzer } } impl smoltcp::phy::Fuzzer for TcpHeaderFuzzer { fn fuzz_packet(&self, frame_data: &mut [u8]) { if self.1 == 0 { return; } let tcp_packet_offset = { let eth_frame = EthernetFrame::new_unchecked(&frame_data); EthernetFrame::<&mut [u8]>::header_len() + match eth_frame.ethertype() { EthernetProtocol::Ipv4 => { Ipv4Packet::new_unchecked(eth_frame.payload()).header_len() as usize } EthernetProtocol::Ipv6 => { Ipv6Packet::new_unchecked(eth_frame.payload()).header_len() as usize } _ => return, } }; let tcp_is_syn = { let tcp_packet = TcpPacket::new_checked(&frame_data[tcp_packet_offset..]).unwrap(); tcp_packet.syn() }; if tcp_is_syn { return; } if !frame_data.ends_with(b"abcdef") { return; } let tcp_header_len = { let tcp_packet = &frame_data[tcp_packet_offset..]; (tcp_packet[12] as usize >> 4) * 4 }; let tcp_packet = &mut frame_data[tcp_packet_offset + 4..]; let replacement_data = &self.0[..self.1]; let copy_len = cmp::min(replacement_data.len(), tcp_header_len); assert!(copy_len < tcp_packet.len()); tcp_packet[..copy_len].copy_from_slice(&replacement_data[..copy_len]); } } struct EmptyFuzzer(); impl smoltcp::phy::Fuzzer for EmptyFuzzer { fn fuzz_packet(&self, _: &mut [u8]) {} } fuzz_target!(|data: &[u8]| { let clock = mock::Clock::new(); let device = { let (mut opts, mut free) = utils::create_options(); utils::add_middleware_options(&mut opts, &mut free); let mut matches = utils::parse_options(&opts, free); let device = utils::parse_middleware_options( &mut matches, Loopback::new(Medium::Ethernet), /*loopback=*/ true, ); smoltcp::phy::FuzzInjector::new(device, EmptyFuzzer(), TcpHeaderFuzzer::new(data)) }; let mut neighbor_cache_entries = [None; 8]; let neighbor_cache = NeighborCache::new(&mut neighbor_cache_entries[..]); let ip_addrs = [IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8)]; let mut iface = InterfaceBuilder::new() .ethernet_addr(EthernetAddress::default()) .neighbor_cache(neighbor_cache) .ip_addrs(ip_addrs) .finalize(&mut device); let server_socket = { // It is not strictly necessary to use a `static mut` and unsafe code here, but // on embedded systems that smoltcp targets it is far better to allocate the data // statically to verify that it fits into RAM rather than get undefined behavior // when stack overflows. static mut TCP_SERVER_RX_DATA: [u8; 1024] = [0; 1024]; static mut TCP_SERVER_TX_DATA: [u8; 1024] = [0; 1024]; let tcp_rx_buffer = tcp::SocketBuffer::new(unsafe { &mut TCP_SERVER_RX_DATA[..] }); let tcp_tx_buffer = tcp::SocketBuffer::new(unsafe { &mut TCP_SERVER_TX_DATA[..] }); tcp::Socket::new(tcp_rx_buffer, tcp_tx_buffer) }; let client_socket = { static mut TCP_CLIENT_RX_DATA: [u8; 1024] = [0; 1024]; static mut TCP_CLIENT_TX_DATA: [u8; 1024] = [0; 1024]; let tcp_rx_buffer = tcp::SocketBuffer::new(unsafe { &mut TCP_CLIENT_RX_DATA[..] }); let tcp_tx_buffer = tcp::SocketBuffer::new(unsafe { &mut TCP_CLIENT_TX_DATA[..] }); tcp::Socket::new(tcp_rx_buffer, tcp_tx_buffer) }; let mut socket_set_entries: [_; 2] = Default::default(); let mut socket_set = SocketSet::new(&mut socket_set_entries[..]); let server_handle = socket_set.add(server_socket); let client_handle = socket_set.add(client_socket); let mut did_listen = false; let mut did_connect = false; let mut done = false; while !done && clock.elapsed() < Instant::from_millis(4_000) { let _ = iface.poll(&mut socket_set, clock.elapsed()); { let mut socket = socket_set.get::(server_handle); if !socket.is_active() && !socket.is_listening() { if !did_listen { socket.listen(1234).unwrap(); did_listen = true; } } if socket.can_recv() { socket.close(); done = true; } } { let mut socket = socket_set.get::(client_handle); if !socket.is_open() { if !did_connect { socket .connect( (IpAddress::v4(127, 0, 0, 1), 1234), (IpAddress::Unspecified, 65000), ) .unwrap(); did_connect = true; } } if socket.can_send() { socket .send_slice(b"0123456789abcdef0123456789abcdef0123456789abcdef") .unwrap(); socket.close(); } } match iface.poll_delay(&socket_set, clock.elapsed()) { Some(Duration::ZERO) => {} Some(delay) => clock.advance(delay), None => clock.advance(Duration::from_millis(1)), } } });