multicast.rs 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. mod utils;
  2. use std::os::unix::io::AsRawFd;
  3. use smoltcp::iface::{InterfaceBuilder, NeighborCache, SocketSet};
  4. use smoltcp::phy::wait as phy_wait;
  5. use smoltcp::socket::{raw, udp};
  6. use smoltcp::time::Instant;
  7. use smoltcp::wire::{
  8. EthernetAddress, IgmpPacket, IgmpRepr, IpAddress, IpCidr, IpProtocol, IpVersion, Ipv4Address,
  9. Ipv4Packet,
  10. };
  11. const MDNS_PORT: u16 = 5353;
  12. const MDNS_GROUP: [u8; 4] = [224, 0, 0, 251];
  13. fn main() {
  14. utils::setup_logging("warn");
  15. let (mut opts, mut free) = utils::create_options();
  16. utils::add_tuntap_options(&mut opts, &mut free);
  17. utils::add_middleware_options(&mut opts, &mut free);
  18. let mut matches = utils::parse_options(&opts, free);
  19. let device = utils::parse_tuntap_options(&mut matches);
  20. let fd = device.as_raw_fd();
  21. let mut device =
  22. utils::parse_middleware_options(&mut matches, device, /*loopback=*/ false);
  23. let neighbor_cache = NeighborCache::new();
  24. let local_addr = Ipv4Address::new(192, 168, 69, 2);
  25. let ethernet_addr = EthernetAddress([0x02, 0x00, 0x00, 0x00, 0x00, 0x02]);
  26. let ip_addr = IpCidr::new(IpAddress::from(local_addr), 24);
  27. let mut ip_addrs = heapless::Vec::<IpCidr, 5>::new();
  28. ip_addrs.push(ip_addr).unwrap();
  29. let mut iface = InterfaceBuilder::new()
  30. .hardware_addr(ethernet_addr.into())
  31. .neighbor_cache(neighbor_cache)
  32. .ip_addrs(ip_addrs)
  33. .finalize(&mut device);
  34. let now = Instant::now();
  35. // Join a multicast group to receive mDNS traffic
  36. iface
  37. .join_multicast_group(&mut device, Ipv4Address::from_bytes(&MDNS_GROUP), now)
  38. .unwrap();
  39. let mut sockets = SocketSet::new(vec![]);
  40. // Must fit at least one IGMP packet
  41. let raw_rx_buffer = raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; 2], vec![0; 512]);
  42. // Will not send IGMP
  43. let raw_tx_buffer = raw::PacketBuffer::new(vec![], vec![]);
  44. let raw_socket = raw::Socket::new(
  45. IpVersion::Ipv4,
  46. IpProtocol::Igmp,
  47. raw_rx_buffer,
  48. raw_tx_buffer,
  49. );
  50. let raw_handle = sockets.add(raw_socket);
  51. // Must fit mDNS payload of at least one packet
  52. let udp_rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY; 4], vec![0; 1024]);
  53. // Will not send mDNS
  54. let udp_tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 0]);
  55. let udp_socket = udp::Socket::new(udp_rx_buffer, udp_tx_buffer);
  56. let udp_handle = sockets.add(udp_socket);
  57. loop {
  58. let timestamp = Instant::now();
  59. iface.poll(timestamp, &mut device, &mut sockets);
  60. let socket = sockets.get_mut::<raw::Socket>(raw_handle);
  61. if socket.can_recv() {
  62. // For display purposes only - normally we wouldn't process incoming IGMP packets
  63. // in the application layer
  64. match socket.recv() {
  65. Err(e) => println!("Recv IGMP error: {e:?}"),
  66. Ok(buf) => {
  67. Ipv4Packet::new_checked(buf)
  68. .and_then(|ipv4_packet| IgmpPacket::new_checked(ipv4_packet.payload()))
  69. .and_then(|igmp_packet| IgmpRepr::parse(&igmp_packet))
  70. .map(|igmp_repr| println!("IGMP packet: {igmp_repr:?}"))
  71. .unwrap_or_else(|e| println!("parse IGMP error: {e:?}"));
  72. }
  73. }
  74. }
  75. let socket = sockets.get_mut::<udp::Socket>(udp_handle);
  76. if !socket.is_open() {
  77. socket.bind(MDNS_PORT).unwrap()
  78. }
  79. if socket.can_recv() {
  80. socket
  81. .recv()
  82. .map(|(data, sender)| {
  83. println!("mDNS traffic: {} UDP bytes from {}", data.len(), sender)
  84. })
  85. .unwrap_or_else(|e| println!("Recv UDP error: {e:?}"));
  86. }
  87. phy_wait(fd, iface.poll_delay(timestamp, &sockets)).expect("wait error");
  88. }
  89. }