ipv4.rs 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. use super::*;
  2. #[cfg(feature = "socket-dhcpv4")]
  3. use crate::socket::dhcpv4;
  4. #[cfg(feature = "socket-icmp")]
  5. use crate::socket::icmp;
  6. use crate::socket::AnySocket;
  7. use crate::phy::{Medium, TxToken};
  8. use crate::time::Instant;
  9. use crate::wire::*;
  10. impl InterfaceInner {
  11. pub(super) fn process_ipv4<'a>(
  12. &mut self,
  13. sockets: &mut SocketSet,
  14. meta: PacketMeta,
  15. ipv4_packet: &Ipv4Packet<&'a [u8]>,
  16. frag: &'a mut FragmentsBuffer,
  17. ) -> Option<Packet<'a>> {
  18. let ipv4_repr = check!(Ipv4Repr::parse(ipv4_packet, &self.caps.checksum));
  19. if !self.is_unicast_v4(ipv4_repr.src_addr) && !ipv4_repr.src_addr.is_unspecified() {
  20. // Discard packets with non-unicast source addresses but allow unspecified
  21. net_debug!("non-unicast or unspecified source address");
  22. return None;
  23. }
  24. #[cfg(feature = "proto-ipv4-fragmentation")]
  25. let ip_payload = {
  26. if ipv4_packet.more_frags() || ipv4_packet.frag_offset() != 0 {
  27. let key = FragKey::Ipv4(ipv4_packet.get_key());
  28. let f = match frag.assembler.get(&key, self.now + frag.reassembly_timeout) {
  29. Ok(f) => f,
  30. Err(_) => {
  31. net_debug!("No available packet assembler for fragmented packet");
  32. return None;
  33. }
  34. };
  35. if !ipv4_packet.more_frags() {
  36. // This is the last fragment, so we know the total size
  37. check!(f.set_total_size(
  38. ipv4_packet.total_len() as usize - ipv4_packet.header_len() as usize
  39. + ipv4_packet.frag_offset() as usize,
  40. ));
  41. }
  42. if let Err(e) = f.add(ipv4_packet.payload(), ipv4_packet.frag_offset() as usize) {
  43. net_debug!("fragmentation error: {:?}", e);
  44. return None;
  45. }
  46. // NOTE: according to the standard, the total length needs to be
  47. // recomputed, as well as the checksum. However, we don't really use
  48. // the IPv4 header after the packet is reassembled.
  49. match f.assemble() {
  50. Some(payload) => payload,
  51. None => return None,
  52. }
  53. } else {
  54. ipv4_packet.payload()
  55. }
  56. };
  57. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  58. let ip_payload = ipv4_packet.payload();
  59. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  60. #[cfg(feature = "socket-raw")]
  61. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);
  62. #[cfg(not(feature = "socket-raw"))]
  63. let handled_by_raw_socket = false;
  64. #[cfg(feature = "socket-dhcpv4")]
  65. {
  66. if ipv4_repr.next_header == IpProtocol::Udp
  67. && matches!(self.caps.medium, Medium::Ethernet)
  68. {
  69. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  70. if let Some(dhcp_socket) = sockets
  71. .items_mut()
  72. .find_map(|i| dhcpv4::Socket::downcast_mut(&mut i.socket))
  73. {
  74. // First check for source and dest ports, then do `UdpRepr::parse` if they match.
  75. // This way we avoid validating the UDP checksum twice for all non-DHCP UDP packets (one here, one in `process_udp`)
  76. if udp_packet.src_port() == dhcp_socket.server_port
  77. && udp_packet.dst_port() == dhcp_socket.client_port
  78. {
  79. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  80. let udp_repr = check!(UdpRepr::parse(
  81. &udp_packet,
  82. &src_addr,
  83. &dst_addr,
  84. &self.caps.checksum
  85. ));
  86. let udp_payload = udp_packet.payload();
  87. dhcp_socket.process(self, &ipv4_repr, &udp_repr, udp_payload);
  88. return None;
  89. }
  90. }
  91. }
  92. }
  93. if !self.has_ip_addr(ipv4_repr.dst_addr)
  94. && !self.has_multicast_group(ipv4_repr.dst_addr)
  95. && !self.is_broadcast_v4(ipv4_repr.dst_addr)
  96. {
  97. // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups.
  98. // If AnyIP is enabled, also check if the packet is routed locally.
  99. if !self.any_ip
  100. || !ipv4_repr.dst_addr.is_unicast()
  101. || self
  102. .routes
  103. .lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), self.now)
  104. .map_or(true, |router_addr| !self.has_ip_addr(router_addr))
  105. {
  106. return None;
  107. }
  108. }
  109. match ipv4_repr.next_header {
  110. IpProtocol::Icmp => self.process_icmpv4(sockets, ip_repr, ip_payload),
  111. #[cfg(feature = "proto-igmp")]
  112. IpProtocol::Igmp => self.process_igmp(ipv4_repr, ip_payload),
  113. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  114. IpProtocol::Udp => {
  115. self.process_udp(sockets, meta, handled_by_raw_socket, ip_repr, ip_payload)
  116. }
  117. #[cfg(feature = "socket-tcp")]
  118. IpProtocol::Tcp => self.process_tcp(sockets, ip_repr, ip_payload),
  119. _ if handled_by_raw_socket => None,
  120. _ => {
  121. // Send back as much of the original payload as we can.
  122. let payload_len =
  123. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  124. let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
  125. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  126. header: ipv4_repr,
  127. data: &ip_payload[0..payload_len],
  128. };
  129. self.icmpv4_reply(ipv4_repr, icmp_reply_repr)
  130. }
  131. }
  132. }
  133. #[cfg(feature = "medium-ethernet")]
  134. pub(super) fn process_arp<'frame>(
  135. &mut self,
  136. timestamp: Instant,
  137. eth_frame: &EthernetFrame<&'frame [u8]>,
  138. ) -> Option<EthernetPacket<'frame>> {
  139. let arp_packet = check!(ArpPacket::new_checked(eth_frame.payload()));
  140. let arp_repr = check!(ArpRepr::parse(&arp_packet));
  141. match arp_repr {
  142. ArpRepr::EthernetIpv4 {
  143. operation,
  144. source_hardware_addr,
  145. source_protocol_addr,
  146. target_protocol_addr,
  147. ..
  148. } => {
  149. // Only process ARP packets for us.
  150. if !self.has_ip_addr(target_protocol_addr) {
  151. return None;
  152. }
  153. // Only process REQUEST and RESPONSE.
  154. if let ArpOperation::Unknown(_) = operation {
  155. net_debug!("arp: unknown operation code");
  156. return None;
  157. }
  158. // Discard packets with non-unicast source addresses.
  159. if !source_protocol_addr.is_unicast() || !source_hardware_addr.is_unicast() {
  160. net_debug!("arp: non-unicast source address");
  161. return None;
  162. }
  163. if !self.in_same_network(&IpAddress::Ipv4(source_protocol_addr)) {
  164. net_debug!("arp: source IP address not in same network as us");
  165. return None;
  166. }
  167. // Fill the ARP cache from any ARP packet aimed at us (both request or response).
  168. // We fill from requests too because if someone is requesting our address they
  169. // are probably going to talk to us, so we avoid having to request their address
  170. // when we later reply to them.
  171. self.neighbor_cache.fill(
  172. source_protocol_addr.into(),
  173. source_hardware_addr.into(),
  174. timestamp,
  175. );
  176. if operation == ArpOperation::Request {
  177. let src_hardware_addr = self.hardware_addr.ethernet_or_panic();
  178. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  179. operation: ArpOperation::Reply,
  180. source_hardware_addr: src_hardware_addr,
  181. source_protocol_addr: target_protocol_addr,
  182. target_hardware_addr: source_hardware_addr,
  183. target_protocol_addr: source_protocol_addr,
  184. }))
  185. } else {
  186. None
  187. }
  188. }
  189. }
  190. }
  191. pub(super) fn process_icmpv4<'frame>(
  192. &mut self,
  193. _sockets: &mut SocketSet,
  194. ip_repr: IpRepr,
  195. ip_payload: &'frame [u8],
  196. ) -> Option<Packet<'frame>> {
  197. let icmp_packet = check!(Icmpv4Packet::new_checked(ip_payload));
  198. let icmp_repr = check!(Icmpv4Repr::parse(&icmp_packet, &self.caps.checksum));
  199. #[cfg(feature = "socket-icmp")]
  200. let mut handled_by_icmp_socket = false;
  201. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  202. for icmp_socket in _sockets
  203. .items_mut()
  204. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  205. {
  206. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  207. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  208. handled_by_icmp_socket = true;
  209. }
  210. }
  211. match icmp_repr {
  212. // Respond to echo requests.
  213. #[cfg(feature = "proto-ipv4")]
  214. Icmpv4Repr::EchoRequest {
  215. ident,
  216. seq_no,
  217. data,
  218. } => {
  219. let icmp_reply_repr = Icmpv4Repr::EchoReply {
  220. ident,
  221. seq_no,
  222. data,
  223. };
  224. match ip_repr {
  225. IpRepr::Ipv4(ipv4_repr) => self.icmpv4_reply(ipv4_repr, icmp_reply_repr),
  226. #[allow(unreachable_patterns)]
  227. _ => unreachable!(),
  228. }
  229. }
  230. // Ignore any echo replies.
  231. Icmpv4Repr::EchoReply { .. } => None,
  232. // Don't report an error if a packet with unknown type
  233. // has been handled by an ICMP socket
  234. #[cfg(feature = "socket-icmp")]
  235. _ if handled_by_icmp_socket => None,
  236. // FIXME: do something correct here?
  237. _ => None,
  238. }
  239. }
  240. pub(super) fn icmpv4_reply<'frame, 'icmp: 'frame>(
  241. &self,
  242. ipv4_repr: Ipv4Repr,
  243. icmp_repr: Icmpv4Repr<'icmp>,
  244. ) -> Option<Packet<'frame>> {
  245. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  246. // Do not send ICMP replies to non-unicast sources
  247. None
  248. } else if self.is_unicast_v4(ipv4_repr.dst_addr) {
  249. // Reply as normal when src_addr and dst_addr are both unicast
  250. let ipv4_reply_repr = Ipv4Repr {
  251. src_addr: ipv4_repr.dst_addr,
  252. dst_addr: ipv4_repr.src_addr,
  253. next_header: IpProtocol::Icmp,
  254. payload_len: icmp_repr.buffer_len(),
  255. hop_limit: 64,
  256. };
  257. Some(Packet::new_ipv4(
  258. ipv4_reply_repr,
  259. IpPayload::Icmpv4(icmp_repr),
  260. ))
  261. } else if self.is_broadcast_v4(ipv4_repr.dst_addr) {
  262. // Only reply to broadcasts for echo replies and not other ICMP messages
  263. match icmp_repr {
  264. Icmpv4Repr::EchoReply { .. } => match self.ipv4_addr() {
  265. Some(src_addr) => {
  266. let ipv4_reply_repr = Ipv4Repr {
  267. src_addr,
  268. dst_addr: ipv4_repr.src_addr,
  269. next_header: IpProtocol::Icmp,
  270. payload_len: icmp_repr.buffer_len(),
  271. hop_limit: 64,
  272. };
  273. Some(Packet::new_ipv4(
  274. ipv4_reply_repr,
  275. IpPayload::Icmpv4(icmp_repr),
  276. ))
  277. }
  278. None => None,
  279. },
  280. _ => None,
  281. }
  282. } else {
  283. None
  284. }
  285. }
  286. #[cfg(feature = "proto-ipv4-fragmentation")]
  287. pub(super) fn dispatch_ipv4_frag<Tx: TxToken>(&mut self, tx_token: Tx, frag: &mut Fragmenter) {
  288. let caps = self.caps.clone();
  289. let mtu_max = self.ip_mtu();
  290. let ip_len = (frag.packet_len - frag.sent_bytes + frag.ipv4.repr.buffer_len()).min(mtu_max);
  291. let payload_len = ip_len - frag.ipv4.repr.buffer_len();
  292. let more_frags = (frag.packet_len - frag.sent_bytes) != payload_len;
  293. frag.ipv4.repr.payload_len = payload_len;
  294. frag.sent_bytes += payload_len;
  295. let mut tx_len = ip_len;
  296. #[cfg(feature = "medium-ethernet")]
  297. if matches!(caps.medium, Medium::Ethernet) {
  298. tx_len += EthernetFrame::<&[u8]>::header_len();
  299. }
  300. // Emit function for the Ethernet header.
  301. #[cfg(feature = "medium-ethernet")]
  302. let emit_ethernet = |repr: &IpRepr, tx_buffer: &mut [u8]| {
  303. let mut frame = EthernetFrame::new_unchecked(tx_buffer);
  304. let src_addr = self.hardware_addr.ethernet_or_panic();
  305. frame.set_src_addr(src_addr);
  306. frame.set_dst_addr(frag.ipv4.dst_hardware_addr);
  307. match repr.version() {
  308. #[cfg(feature = "proto-ipv4")]
  309. IpVersion::Ipv4 => frame.set_ethertype(EthernetProtocol::Ipv4),
  310. #[cfg(feature = "proto-ipv6")]
  311. IpVersion::Ipv6 => frame.set_ethertype(EthernetProtocol::Ipv6),
  312. }
  313. };
  314. tx_token.consume(tx_len, |mut tx_buffer| {
  315. #[cfg(feature = "medium-ethernet")]
  316. if matches!(self.caps.medium, Medium::Ethernet) {
  317. emit_ethernet(&IpRepr::Ipv4(frag.ipv4.repr), tx_buffer);
  318. tx_buffer = &mut tx_buffer[EthernetFrame::<&[u8]>::header_len()..];
  319. }
  320. let mut packet =
  321. Ipv4Packet::new_unchecked(&mut tx_buffer[..frag.ipv4.repr.buffer_len()]);
  322. frag.ipv4.repr.emit(&mut packet, &caps.checksum);
  323. packet.set_ident(frag.ipv4.ident);
  324. packet.set_more_frags(more_frags);
  325. packet.set_dont_frag(false);
  326. packet.set_frag_offset(frag.ipv4.frag_offset);
  327. if caps.checksum.ipv4.tx() {
  328. packet.fill_checksum();
  329. }
  330. tx_buffer[frag.ipv4.repr.buffer_len()..][..payload_len].copy_from_slice(
  331. &frag.buffer[frag.ipv4.frag_offset as usize + frag.ipv4.repr.buffer_len()..]
  332. [..payload_len],
  333. );
  334. // Update the frag offset for the next fragment.
  335. frag.ipv4.frag_offset += payload_len as u16;
  336. })
  337. }
  338. #[cfg(feature = "proto-igmp")]
  339. pub(super) fn igmp_report_packet<'any>(
  340. &self,
  341. version: IgmpVersion,
  342. group_addr: Ipv4Address,
  343. ) -> Option<Packet<'any>> {
  344. let iface_addr = self.ipv4_addr()?;
  345. let igmp_repr = IgmpRepr::MembershipReport {
  346. group_addr,
  347. version,
  348. };
  349. let pkt = Packet::new_ipv4(
  350. Ipv4Repr {
  351. src_addr: iface_addr,
  352. // Send to the group being reported
  353. dst_addr: group_addr,
  354. next_header: IpProtocol::Igmp,
  355. payload_len: igmp_repr.buffer_len(),
  356. hop_limit: 1,
  357. // [#183](https://github.com/m-labs/smoltcp/issues/183).
  358. },
  359. IpPayload::Igmp(igmp_repr),
  360. );
  361. Some(pkt)
  362. }
  363. #[cfg(feature = "proto-igmp")]
  364. pub(super) fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<Packet<'any>> {
  365. self.ipv4_addr().map(|iface_addr| {
  366. let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
  367. Packet::new_ipv4(
  368. Ipv4Repr {
  369. src_addr: iface_addr,
  370. dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS,
  371. next_header: IpProtocol::Igmp,
  372. payload_len: igmp_repr.buffer_len(),
  373. hop_limit: 1,
  374. },
  375. IpPayload::Igmp(igmp_repr),
  376. )
  377. })
  378. }
  379. }