assembler.rs 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. use core::fmt;
  2. /// A contiguous chunk of absent data, followed by a contiguous chunk of present data.
  3. #[derive(Debug, Clone, Copy, PartialEq, Eq)]
  4. struct Contig {
  5. hole_size: usize,
  6. data_size: usize
  7. }
  8. impl fmt::Display for Contig {
  9. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
  10. if self.has_hole() { write!(f, "({})", self.hole_size)?; }
  11. if self.has_hole() && self.has_data() { write!(f, " ")?; }
  12. if self.has_data() { write!(f, "{}", self.data_size)?; }
  13. Ok(())
  14. }
  15. }
  16. impl Contig {
  17. fn empty() -> Contig {
  18. Contig { hole_size: 0, data_size: 0 }
  19. }
  20. fn hole(size: usize) -> Contig {
  21. Contig { hole_size: size, data_size: 0 }
  22. }
  23. fn hole_and_data(hole_size: usize, data_size: usize) -> Contig {
  24. Contig { hole_size, data_size }
  25. }
  26. fn has_hole(&self) -> bool {
  27. self.hole_size != 0
  28. }
  29. fn has_data(&self) -> bool {
  30. self.data_size != 0
  31. }
  32. fn total_size(&self) -> usize {
  33. self.hole_size + self.data_size
  34. }
  35. fn is_empty(&self) -> bool {
  36. self.total_size() == 0
  37. }
  38. fn expand_data_by(&mut self, size: usize) {
  39. self.data_size += size;
  40. }
  41. fn shrink_hole_by(&mut self, size: usize) {
  42. self.hole_size -= size;
  43. }
  44. fn shrink_hole_to(&mut self, size: usize) {
  45. debug_assert!(self.hole_size >= size);
  46. let total_size = self.total_size();
  47. self.hole_size = size;
  48. self.data_size = total_size - size;
  49. }
  50. }
  51. #[cfg(feature = "std")]
  52. use std::boxed::Box;
  53. #[cfg(all(feature = "alloc", not(feature = "std")))]
  54. use alloc::boxed::Box;
  55. #[cfg(any(feature = "std", feature = "alloc"))]
  56. const CONTIG_COUNT: usize = 32;
  57. #[cfg(not(any(feature = "std", feature = "alloc")))]
  58. const CONTIG_COUNT: usize = 4;
  59. /// A buffer (re)assembler.
  60. ///
  61. /// Currently, up to a hardcoded limit of 4 or 32 holes can be tracked in the buffer.
  62. #[derive(Debug)]
  63. #[cfg_attr(test, derive(PartialEq, Eq, Clone))]
  64. pub struct Assembler {
  65. #[cfg(not(any(feature = "std", feature = "alloc")))]
  66. contigs: [Contig; CONTIG_COUNT],
  67. #[cfg(any(feature = "std", feature = "alloc"))]
  68. contigs: Box<[Contig; CONTIG_COUNT]>,
  69. }
  70. impl fmt::Display for Assembler {
  71. fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
  72. write!(f, "[ ")?;
  73. for contig in self.contigs.iter() {
  74. if contig.is_empty() { break }
  75. write!(f, "{} ", contig)?;
  76. }
  77. write!(f, "]")?;
  78. Ok(())
  79. }
  80. }
  81. impl Assembler {
  82. /// Create a new buffer assembler for buffers of the given size.
  83. pub fn new(size: usize) -> Assembler {
  84. #[cfg(not(any(feature = "std", feature = "alloc")))]
  85. let mut contigs = [Contig::empty(); CONTIG_COUNT];
  86. #[cfg(any(feature = "std", feature = "alloc"))]
  87. let mut contigs = Box::new([Contig::empty(); CONTIG_COUNT]);
  88. contigs[0] = Contig::hole(size);
  89. Assembler { contigs }
  90. }
  91. /// FIXME(whitequark): remove this once I'm certain enough that the assembler works well.
  92. #[allow(dead_code)]
  93. pub(crate) fn total_size(&self) -> usize {
  94. self.contigs
  95. .iter()
  96. .map(|contig| contig.total_size())
  97. .sum()
  98. }
  99. fn front(&self) -> Contig {
  100. self.contigs[0]
  101. }
  102. fn back(&self) -> Contig {
  103. self.contigs[self.contigs.len() - 1]
  104. }
  105. /// Return whether the assembler contains no data.
  106. pub fn is_empty(&self) -> bool {
  107. !self.front().has_data()
  108. }
  109. /// Remove a contig at the given index, and return a pointer to the first contig
  110. /// without data.
  111. fn remove_contig_at(&mut self, at: usize) -> &mut Contig {
  112. debug_assert!(!self.contigs[at].is_empty());
  113. for i in at..self.contigs.len() - 1 {
  114. self.contigs[i] = self.contigs[i + 1];
  115. if !self.contigs[i].has_data() {
  116. self.contigs[i + 1] = Contig::empty();
  117. return &mut self.contigs[i]
  118. }
  119. }
  120. // Removing the last one.
  121. self.contigs[at] = Contig::empty();
  122. &mut self.contigs[at]
  123. }
  124. /// Add a contig at the given index, and return a pointer to it.
  125. fn add_contig_at(&mut self, at: usize) -> Result<&mut Contig, ()> {
  126. debug_assert!(!self.contigs[at].is_empty());
  127. if !self.back().is_empty() { return Err(()) }
  128. for i in (at + 1..self.contigs.len()).rev() {
  129. self.contigs[i] = self.contigs[i - 1];
  130. }
  131. self.contigs[at] = Contig::empty();
  132. Ok(&mut self.contigs[at])
  133. }
  134. /// Add a new contiguous range to the assembler, and return `Ok(())`,
  135. /// or return `Err(())` if too many discontiguities are already recorded.
  136. pub fn add(&mut self, mut offset: usize, mut size: usize) -> Result<(), ()> {
  137. let mut index = 0;
  138. while index != self.contigs.len() && size != 0 {
  139. let contig = self.contigs[index];
  140. if offset >= contig.total_size() {
  141. // The range being added does not cover this contig, skip it.
  142. index += 1;
  143. } else if offset == 0 && size >= contig.hole_size && index > 0 {
  144. // The range being added covers the entire hole in this contig, merge it
  145. // into the previous config.
  146. self.contigs[index - 1].expand_data_by(contig.total_size());
  147. self.remove_contig_at(index);
  148. index += 0;
  149. } else if offset == 0 && size < contig.hole_size && index > 0 {
  150. // The range being added covers a part of the hole in this contig starting
  151. // at the beginning, shrink the hole in this contig and expand data in
  152. // the previous contig.
  153. self.contigs[index - 1].expand_data_by(size);
  154. self.contigs[index].shrink_hole_by(size);
  155. index += 1;
  156. } else if offset <= contig.hole_size && offset + size >= contig.hole_size {
  157. // The range being added covers both a part of the hole and a part of the data
  158. // in this contig, shrink the hole in this contig.
  159. self.contigs[index].shrink_hole_to(offset);
  160. index += 1;
  161. } else if offset + size >= contig.hole_size {
  162. // The range being added covers only a part of the data in this contig, skip it.
  163. index += 1;
  164. } else if offset + size < contig.hole_size {
  165. // The range being added covers a part of the hole but not of the data
  166. // in this contig, add a new contig containing the range.
  167. {
  168. let inserted = self.add_contig_at(index)?;
  169. *inserted = Contig::hole_and_data(offset, size);
  170. }
  171. // Previous contigs[index] got moved to contigs[index+1]
  172. self.contigs[index+1].shrink_hole_by(offset + size);
  173. index += 2;
  174. } else {
  175. unreachable!()
  176. }
  177. // Skip the portion of the range covered by this contig.
  178. if offset >= contig.total_size() {
  179. offset = offset.saturating_sub(contig.total_size());
  180. } else {
  181. size = (offset + size).saturating_sub(contig.total_size());
  182. offset = 0;
  183. }
  184. }
  185. debug_assert!(size == 0);
  186. Ok(())
  187. }
  188. /// Remove a contiguous range from the front of the assembler and `Some(data_size)`,
  189. /// or return `None` if there is no such range.
  190. pub fn remove_front(&mut self) -> Option<usize> {
  191. let front = self.front();
  192. if front.has_hole() {
  193. None
  194. } else {
  195. let last_hole = self.remove_contig_at(0);
  196. last_hole.hole_size += front.data_size;
  197. debug_assert!(front.data_size > 0);
  198. Some(front.data_size)
  199. }
  200. }
  201. /// Iterate over all of the contiguous data ranges.
  202. ///
  203. /// This is used in calculating what data ranges have been received. The offset indicates the
  204. /// number of bytes of contiguous data received before the beginnings of this Assembler.
  205. ///
  206. /// Data Hole Data
  207. /// |--- 100 ---|--- 200 ---|--- 100 ---|
  208. ///
  209. /// An offset of 1500 would return the ranges: ``(1500, 1600), (1800, 1900)``
  210. pub fn iter_data<'a>(&'a self, first_offset: usize) -> AssemblerIter<'a> {
  211. AssemblerIter::new(self, first_offset)
  212. }
  213. }
  214. pub struct AssemblerIter<'a> {
  215. assembler: &'a Assembler,
  216. offset: usize,
  217. index: usize,
  218. left: usize,
  219. right: usize
  220. }
  221. impl<'a> AssemblerIter<'a> {
  222. fn new(assembler: &'a Assembler, offset: usize) -> AssemblerIter<'a> {
  223. AssemblerIter {
  224. assembler: assembler,
  225. offset: offset,
  226. index: 0,
  227. left: 0,
  228. right: 0
  229. }
  230. }
  231. }
  232. impl<'a> Iterator for AssemblerIter<'a> {
  233. type Item = (usize, usize);
  234. fn next(&mut self) -> Option<(usize, usize)> {
  235. let mut data_range = None;
  236. while data_range.is_none() && self.index < self.assembler.contigs.len() {
  237. let contig = self.assembler.contigs[self.index];
  238. self.left += contig.hole_size;
  239. self.right = self.left + contig.data_size;
  240. data_range = if self.left < self.right {
  241. let data_range = (self.left + self.offset, self.right + self.offset);
  242. self.left = self.right;
  243. Some(data_range)
  244. } else {
  245. None
  246. };
  247. self.index += 1;
  248. }
  249. data_range
  250. }
  251. }
  252. #[cfg(test)]
  253. mod test {
  254. use std::vec::Vec;
  255. use super::*;
  256. impl From<Vec<(usize, usize)>> for Assembler {
  257. fn from(vec: Vec<(usize, usize)>) -> Assembler {
  258. #[cfg(not(any(feature = "std", feature = "alloc")))]
  259. let mut contigs = [Contig::empty(); CONTIG_COUNT];
  260. #[cfg(any(feature = "std", feature = "alloc"))]
  261. let mut contigs = Box::new([Contig::empty(); CONTIG_COUNT]);
  262. for (i, &(hole_size, data_size)) in vec.iter().enumerate() {
  263. contigs[i] = Contig { hole_size, data_size };
  264. }
  265. Assembler { contigs }
  266. }
  267. }
  268. macro_rules! contigs {
  269. [$( $x:expr ),*] => ({
  270. Assembler::from(vec![$( $x ),*])
  271. })
  272. }
  273. #[test]
  274. fn test_new() {
  275. let assr = Assembler::new(16);
  276. assert_eq!(assr.total_size(), 16);
  277. assert_eq!(assr, contigs![(16, 0)]);
  278. }
  279. #[test]
  280. fn test_empty_add_full() {
  281. let mut assr = Assembler::new(16);
  282. assert_eq!(assr.add(0, 16), Ok(()));
  283. assert_eq!(assr, contigs![(0, 16)]);
  284. }
  285. #[test]
  286. fn test_empty_add_front() {
  287. let mut assr = Assembler::new(16);
  288. assert_eq!(assr.add(0, 4), Ok(()));
  289. assert_eq!(assr, contigs![(0, 4), (12, 0)]);
  290. }
  291. #[test]
  292. fn test_empty_add_back() {
  293. let mut assr = Assembler::new(16);
  294. assert_eq!(assr.add(12, 4), Ok(()));
  295. assert_eq!(assr, contigs![(12, 4)]);
  296. }
  297. #[test]
  298. fn test_empty_add_mid() {
  299. let mut assr = Assembler::new(16);
  300. assert_eq!(assr.add(4, 8), Ok(()));
  301. assert_eq!(assr, contigs![(4, 8), (4, 0)]);
  302. }
  303. #[test]
  304. fn test_partial_add_front() {
  305. let mut assr = contigs![(4, 8), (4, 0)];
  306. assert_eq!(assr.add(0, 4), Ok(()));
  307. assert_eq!(assr, contigs![(0, 12), (4, 0)]);
  308. }
  309. #[test]
  310. fn test_partial_add_back() {
  311. let mut assr = contigs![(4, 8), (4, 0)];
  312. assert_eq!(assr.add(12, 4), Ok(()));
  313. assert_eq!(assr, contigs![(4, 12)]);
  314. }
  315. #[test]
  316. fn test_partial_add_front_overlap() {
  317. let mut assr = contigs![(4, 8), (4, 0)];
  318. assert_eq!(assr.add(0, 8), Ok(()));
  319. assert_eq!(assr, contigs![(0, 12), (4, 0)]);
  320. }
  321. #[test]
  322. fn test_partial_add_front_overlap_split() {
  323. let mut assr = contigs![(4, 8), (4, 0)];
  324. assert_eq!(assr.add(2, 6), Ok(()));
  325. assert_eq!(assr, contigs![(2, 10), (4, 0)]);
  326. }
  327. #[test]
  328. fn test_partial_add_back_overlap() {
  329. let mut assr = contigs![(4, 8), (4, 0)];
  330. assert_eq!(assr.add(8, 8), Ok(()));
  331. assert_eq!(assr, contigs![(4, 12)]);
  332. }
  333. #[test]
  334. fn test_partial_add_back_overlap_split() {
  335. let mut assr = contigs![(4, 8), (4, 0)];
  336. assert_eq!(assr.add(10, 4), Ok(()));
  337. assert_eq!(assr, contigs![(4, 10), (2, 0)]);
  338. }
  339. #[test]
  340. fn test_partial_add_both_overlap() {
  341. let mut assr = contigs![(4, 8), (4, 0)];
  342. assert_eq!(assr.add(0, 16), Ok(()));
  343. assert_eq!(assr, contigs![(0, 16)]);
  344. }
  345. #[test]
  346. fn test_partial_add_both_overlap_split() {
  347. let mut assr = contigs![(4, 8), (4, 0)];
  348. assert_eq!(assr.add(2, 12), Ok(()));
  349. assert_eq!(assr, contigs![(2, 12), (2, 0)]);
  350. }
  351. #[test]
  352. fn test_rejected_add_keeps_state() {
  353. let mut assr = Assembler::new(CONTIG_COUNT*20);
  354. for c in 1..=CONTIG_COUNT-1 {
  355. assert_eq!(assr.add(c*10, 3), Ok(()));
  356. }
  357. // Maximum of allowed holes is reached
  358. let assr_before = assr.clone();
  359. assert_eq!(assr.add(1, 3), Err(()));
  360. assert_eq!(assr_before, assr);
  361. }
  362. #[test]
  363. fn test_empty_remove_front() {
  364. let mut assr = contigs![(12, 0)];
  365. assert_eq!(assr.remove_front(), None);
  366. }
  367. #[test]
  368. fn test_trailing_hole_remove_front() {
  369. let mut assr = contigs![(0, 4), (8, 0)];
  370. assert_eq!(assr.remove_front(), Some(4));
  371. assert_eq!(assr, contigs![(12, 0)]);
  372. }
  373. #[test]
  374. fn test_trailing_data_remove_front() {
  375. let mut assr = contigs![(0, 4), (4, 4)];
  376. assert_eq!(assr.remove_front(), Some(4));
  377. assert_eq!(assr, contigs![(4, 4), (4, 0)]);
  378. }
  379. #[test]
  380. fn test_iter_empty() {
  381. let assr = Assembler::new(16);
  382. let segments: Vec<_> = assr.iter_data(10).collect();
  383. assert_eq!(segments, vec![]);
  384. }
  385. #[test]
  386. fn test_iter_full() {
  387. let mut assr = Assembler::new(16);
  388. assert_eq!(assr.add(0, 16), Ok(()));
  389. let segments: Vec<_> = assr.iter_data(10).collect();
  390. assert_eq!(segments, vec![(10, 26)]);
  391. }
  392. #[test]
  393. fn test_iter_offset() {
  394. let mut assr = Assembler::new(16);
  395. assert_eq!(assr.add(0, 16), Ok(()));
  396. let segments: Vec<_> = assr.iter_data(100).collect();
  397. assert_eq!(segments, vec![(100, 116)]);
  398. }
  399. #[test]
  400. fn test_iter_one_front() {
  401. let mut assr = Assembler::new(16);
  402. assert_eq!(assr.add(0, 4), Ok(()));
  403. let segments: Vec<_> = assr.iter_data(10).collect();
  404. assert_eq!(segments, vec![(10, 14)]);
  405. }
  406. #[test]
  407. fn test_iter_one_back() {
  408. let mut assr = Assembler::new(16);
  409. assert_eq!(assr.add(12, 4), Ok(()));
  410. let segments: Vec<_> = assr.iter_data(10).collect();
  411. assert_eq!(segments, vec![(22, 26)]);
  412. }
  413. #[test]
  414. fn test_iter_one_mid() {
  415. let mut assr = Assembler::new(16);
  416. assert_eq!(assr.add(4, 8), Ok(()));
  417. let segments: Vec<_> = assr.iter_data(10).collect();
  418. assert_eq!(segments, vec![(14, 22)]);
  419. }
  420. #[test]
  421. fn test_iter_one_trailing_gap() {
  422. let assr = contigs![(4, 8), (4, 0)];
  423. let segments: Vec<_> = assr.iter_data(100).collect();
  424. assert_eq!(segments, vec![(104, 112)]);
  425. }
  426. #[test]
  427. fn test_iter_two_split() {
  428. let assr = contigs![(2, 6), (4, 1), (1, 0)];
  429. let segments: Vec<_> = assr.iter_data(100).collect();
  430. assert_eq!(segments, vec![(102, 108), (112, 113)]);
  431. }
  432. #[test]
  433. fn test_iter_three_split() {
  434. let assr = contigs![(2, 6), (2, 1), (2, 2), (1, 0)];
  435. let segments: Vec<_> = assr.iter_data(100).collect();
  436. assert_eq!(segments, vec![(102, 108), (110, 111), (113, 115)]);
  437. }
  438. }