interface.rs 174 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660
  1. // Heads up! Before working on this file you should read the parts
  2. // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
  3. // and RFCs 8200 and 4861 for any IPv6 and NDISC work.
  4. use core::cmp;
  5. use managed::{ManagedMap, ManagedSlice};
  6. #[cfg(any(feature = "proto-ipv4", feature = "proto-sixlowpan"))]
  7. use super::fragmentation::PacketAssemblerSet;
  8. use super::socket_set::SocketSet;
  9. use crate::iface::Routes;
  10. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  11. use crate::iface::{NeighborAnswer, NeighborCache};
  12. use crate::phy::{ChecksumCapabilities, Device, DeviceCapabilities, Medium, RxToken, TxToken};
  13. use crate::rand::Rand;
  14. #[cfg(feature = "socket-dhcpv4")]
  15. use crate::socket::dhcpv4;
  16. #[cfg(feature = "socket-dns")]
  17. use crate::socket::dns;
  18. use crate::socket::*;
  19. use crate::time::{Duration, Instant};
  20. use crate::wire::*;
  21. use crate::{Error, Result};
  22. pub(crate) struct FragmentsBuffer<'a> {
  23. #[cfg(feature = "proto-ipv4-fragmentation")]
  24. ipv4_fragments: PacketAssemblerSet<'a, Ipv4FragKey>,
  25. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  26. sixlowpan_fragments: PacketAssemblerSet<'a, SixlowpanFragKey>,
  27. #[cfg(not(any(
  28. feature = "proto-ipv4-fragmentation",
  29. feature = "proto-sixlowpan-fragmentation"
  30. )))]
  31. _lifetime: core::marker::PhantomData<&'a ()>,
  32. }
  33. pub(crate) struct OutPackets<'a> {
  34. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  35. sixlowpan_out_packet: SixlowpanOutPacket<'a>,
  36. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  37. _lifetime: core::marker::PhantomData<&'a ()>,
  38. }
  39. impl<'a> OutPackets<'a> {
  40. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  41. /// Returns `true` when all the data of the outgoing buffers are transmitted.
  42. fn all_transmitted(&self) -> bool {
  43. self.sixlowpan_out_packet.finished() || self.sixlowpan_out_packet.is_empty()
  44. }
  45. }
  46. #[allow(unused)]
  47. #[cfg(feature = "proto-sixlowpan")]
  48. pub(crate) struct SixlowpanOutPacket<'a> {
  49. /// The buffer that holds the unfragmented 6LoWPAN packet.
  50. buffer: ManagedSlice<'a, u8>,
  51. /// The size of the packet without the IEEE802.15.4 header and the fragmentation headers.
  52. packet_len: usize,
  53. /// The amount of bytes that already have been transmitted.
  54. sent_bytes: usize,
  55. /// The datagram size that is used for the fragmentation headers.
  56. datagram_size: u16,
  57. /// The datagram tag that is used for the fragmentation headers.
  58. datagram_tag: u16,
  59. /// The size of the FRAG_N packets.
  60. fragn_size: usize,
  61. /// The link layer IEEE802.15.4 source address.
  62. ll_dst_addr: Ieee802154Address,
  63. /// The link layer IEEE802.15.4 source address.
  64. ll_src_addr: Ieee802154Address,
  65. }
  66. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  67. impl<'a> SixlowpanOutPacket<'a> {
  68. pub(crate) fn new(buffer: ManagedSlice<'a, u8>) -> Self {
  69. Self {
  70. buffer,
  71. packet_len: 0,
  72. datagram_size: 0,
  73. datagram_tag: 0,
  74. sent_bytes: 0,
  75. fragn_size: 0,
  76. ll_dst_addr: Ieee802154Address::Absent,
  77. ll_src_addr: Ieee802154Address::Absent,
  78. }
  79. }
  80. /// Return `true` when everything is transmitted.
  81. #[inline]
  82. fn finished(&self) -> bool {
  83. self.packet_len == self.sent_bytes
  84. }
  85. /// Returns `true` when there is nothing to transmit.
  86. #[inline]
  87. fn is_empty(&self) -> bool {
  88. self.packet_len == 0
  89. }
  90. // Reset the buffer.
  91. fn reset(&mut self) {
  92. self.packet_len = 0;
  93. self.datagram_size = 0;
  94. self.datagram_tag = 0;
  95. self.sent_bytes = 0;
  96. self.fragn_size = 0;
  97. self.ll_dst_addr = Ieee802154Address::Absent;
  98. self.ll_src_addr = Ieee802154Address::Absent;
  99. }
  100. }
  101. macro_rules! check {
  102. ($e:expr) => {
  103. match $e {
  104. Ok(x) => x,
  105. Err(_) => {
  106. // concat!/stringify! doesn't work with defmt macros
  107. #[cfg(not(feature = "defmt"))]
  108. net_trace!(concat!("iface: malformed ", stringify!($e)));
  109. #[cfg(feature = "defmt")]
  110. net_trace!("iface: malformed");
  111. return Default::default();
  112. }
  113. }
  114. };
  115. }
  116. /// A network interface.
  117. ///
  118. /// The network interface logically owns a number of other data structures; to avoid
  119. /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
  120. /// a `&mut [T]`, or `Vec<T>` if a heap is available.
  121. pub struct Interface<'a> {
  122. inner: InterfaceInner<'a>,
  123. fragments: FragmentsBuffer<'a>,
  124. out_packets: OutPackets<'a>,
  125. }
  126. /// The device independent part of an Ethernet network interface.
  127. ///
  128. /// Separating the device from the data required for processing and dispatching makes
  129. /// it possible to borrow them independently. For example, the tx and rx tokens borrow
  130. /// the `device` mutably until they're used, which makes it impossible to call other
  131. /// methods on the `Interface` in this time (since its `device` field is borrowed
  132. /// exclusively). However, it is still possible to call methods on its `inner` field.
  133. pub struct InterfaceInner<'a> {
  134. caps: DeviceCapabilities,
  135. now: Instant,
  136. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  137. neighbor_cache: Option<NeighborCache<'a>>,
  138. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  139. hardware_addr: Option<HardwareAddress>,
  140. #[cfg(feature = "medium-ieee802154")]
  141. sequence_no: u8,
  142. #[cfg(feature = "medium-ieee802154")]
  143. pan_id: Option<Ieee802154Pan>,
  144. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  145. tag: u16,
  146. ip_addrs: ManagedSlice<'a, IpCidr>,
  147. #[cfg(feature = "proto-ipv4")]
  148. any_ip: bool,
  149. routes: Routes<'a>,
  150. #[cfg(feature = "proto-igmp")]
  151. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  152. /// When to report for (all or) the next multicast group membership via IGMP
  153. #[cfg(feature = "proto-igmp")]
  154. igmp_report_state: IgmpReportState,
  155. rand: Rand,
  156. }
  157. /// A builder structure used for creating a network interface.
  158. pub struct InterfaceBuilder<'a> {
  159. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  160. hardware_addr: Option<HardwareAddress>,
  161. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  162. neighbor_cache: Option<NeighborCache<'a>>,
  163. #[cfg(feature = "medium-ieee802154")]
  164. pan_id: Option<Ieee802154Pan>,
  165. ip_addrs: ManagedSlice<'a, IpCidr>,
  166. #[cfg(feature = "proto-ipv4")]
  167. any_ip: bool,
  168. routes: Routes<'a>,
  169. /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead.
  170. #[cfg(feature = "proto-igmp")]
  171. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  172. random_seed: u64,
  173. #[cfg(feature = "proto-ipv4-fragmentation")]
  174. ipv4_fragments: Option<PacketAssemblerSet<'a, Ipv4FragKey>>,
  175. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  176. sixlowpan_fragments: Option<PacketAssemblerSet<'a, SixlowpanFragKey>>,
  177. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  178. sixlowpan_out_buffer: Option<ManagedSlice<'a, u8>>,
  179. }
  180. impl<'a> InterfaceBuilder<'a> {
  181. /// Create a builder used for creating a network interface using the
  182. /// given device and address.
  183. #[cfg_attr(
  184. all(feature = "medium-ethernet", not(feature = "proto-sixlowpan")),
  185. doc = r##"
  186. # Examples
  187. ```
  188. # use std::collections::BTreeMap;
  189. #[cfg(feature = "proto-ipv4-fragmentation")]
  190. use smoltcp::iface::FragmentsCache;
  191. use smoltcp::iface::{InterfaceBuilder, NeighborCache};
  192. # use smoltcp::phy::{Loopback, Medium};
  193. use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress};
  194. let mut device = // ...
  195. # Loopback::new(Medium::Ethernet);
  196. let hw_addr = // ...
  197. # EthernetAddress::default();
  198. let neighbor_cache = // ...
  199. # NeighborCache::new(BTreeMap::new());
  200. # #[cfg(feature = "proto-ipv4-fragmentation")]
  201. # let ipv4_frag_cache = // ...
  202. # FragmentsCache::new(vec![], BTreeMap::new());
  203. let ip_addrs = // ...
  204. # [];
  205. let builder = InterfaceBuilder::new()
  206. .hardware_addr(hw_addr.into())
  207. .neighbor_cache(neighbor_cache)
  208. .ip_addrs(ip_addrs);
  209. # #[cfg(feature = "proto-ipv4-fragmentation")]
  210. let builder = builder.ipv4_fragments_cache(ipv4_frag_cache);
  211. let iface = builder.finalize(&mut device);
  212. ```
  213. "##
  214. )]
  215. #[allow(clippy::new_without_default)]
  216. pub fn new() -> Self {
  217. InterfaceBuilder {
  218. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  219. hardware_addr: None,
  220. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  221. neighbor_cache: None,
  222. #[cfg(feature = "medium-ieee802154")]
  223. pan_id: None,
  224. ip_addrs: ManagedSlice::Borrowed(&mut []),
  225. #[cfg(feature = "proto-ipv4")]
  226. any_ip: false,
  227. routes: Routes::new(ManagedMap::Borrowed(&mut [])),
  228. #[cfg(feature = "proto-igmp")]
  229. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  230. random_seed: 0,
  231. #[cfg(feature = "proto-ipv4-fragmentation")]
  232. ipv4_fragments: None,
  233. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  234. sixlowpan_fragments: None,
  235. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  236. sixlowpan_out_buffer: None,
  237. }
  238. }
  239. /// Set the random seed for this interface.
  240. ///
  241. /// It is strongly recommended that the random seed is different on each boot,
  242. /// to avoid problems with TCP port/sequence collisions.
  243. ///
  244. /// The seed doesn't have to be cryptographically secure.
  245. pub fn random_seed(mut self, random_seed: u64) -> Self {
  246. self.random_seed = random_seed;
  247. self
  248. }
  249. /// Set the Hardware address the interface will use. See also
  250. /// [hardware_addr].
  251. ///
  252. /// # Panics
  253. /// This function panics if the address is not unicast.
  254. ///
  255. /// [hardware_addr]: struct.Interface.html#method.hardware_addr
  256. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  257. pub fn hardware_addr(mut self, addr: HardwareAddress) -> Self {
  258. InterfaceInner::check_hardware_addr(&addr);
  259. self.hardware_addr = Some(addr);
  260. self
  261. }
  262. /// Set the IEEE802.15.4 PAN ID the interface will use.
  263. ///
  264. /// **NOTE**: we use the same PAN ID for destination and source.
  265. #[cfg(feature = "medium-ieee802154")]
  266. pub fn pan_id(mut self, pan_id: Ieee802154Pan) -> Self {
  267. self.pan_id = Some(pan_id);
  268. self
  269. }
  270. /// Set the IP addresses the interface will use. See also
  271. /// [ip_addrs].
  272. ///
  273. /// # Panics
  274. /// This function panics if any of the addresses are not unicast.
  275. ///
  276. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  277. pub fn ip_addrs<T>(mut self, ip_addrs: T) -> Self
  278. where
  279. T: Into<ManagedSlice<'a, IpCidr>>,
  280. {
  281. let ip_addrs = ip_addrs.into();
  282. InterfaceInner::check_ip_addrs(&ip_addrs);
  283. self.ip_addrs = ip_addrs;
  284. self
  285. }
  286. /// Enable or disable the AnyIP capability, allowing packets to be received
  287. /// locally on IPv4 addresses other than the interface's configured [ip_addrs].
  288. /// When AnyIP is enabled and a route prefix in [routes] specifies one of
  289. /// the interface's [ip_addrs] as its gateway, the interface will accept
  290. /// packets addressed to that prefix.
  291. ///
  292. /// # IPv6
  293. ///
  294. /// This option is not available or required for IPv6 as packets sent to
  295. /// the interface are not filtered by IPv6 address.
  296. ///
  297. /// [routes]: struct.Interface.html#method.routes
  298. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  299. #[cfg(feature = "proto-ipv4")]
  300. pub fn any_ip(mut self, enabled: bool) -> Self {
  301. self.any_ip = enabled;
  302. self
  303. }
  304. /// Set the IP routes the interface will use. See also
  305. /// [routes].
  306. ///
  307. /// [routes]: struct.Interface.html#method.routes
  308. pub fn routes<T>(mut self, routes: T) -> InterfaceBuilder<'a>
  309. where
  310. T: Into<Routes<'a>>,
  311. {
  312. self.routes = routes.into();
  313. self
  314. }
  315. /// Provide storage for multicast groups.
  316. ///
  317. /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`.
  318. /// Using [`join_multicast_group()`] will send initial membership reports.
  319. ///
  320. /// A previously destroyed interface can be recreated by reusing the multicast group
  321. /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`.
  322. /// Note that this way initial membership reports are **not** sent.
  323. ///
  324. /// [`join_multicast_group()`]: struct.Interface.html#method.join_multicast_group
  325. #[cfg(feature = "proto-igmp")]
  326. pub fn ipv4_multicast_groups<T>(mut self, ipv4_multicast_groups: T) -> Self
  327. where
  328. T: Into<ManagedMap<'a, Ipv4Address, ()>>,
  329. {
  330. self.ipv4_multicast_groups = ipv4_multicast_groups.into();
  331. self
  332. }
  333. /// Set the Neighbor Cache the interface will use.
  334. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  335. pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'a>) -> Self {
  336. self.neighbor_cache = Some(neighbor_cache);
  337. self
  338. }
  339. #[cfg(feature = "proto-ipv4-fragmentation")]
  340. pub fn ipv4_fragments_cache(mut self, storage: PacketAssemblerSet<'a, Ipv4FragKey>) -> Self {
  341. self.ipv4_fragments = Some(storage);
  342. self
  343. }
  344. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  345. pub fn sixlowpan_fragments_cache(
  346. mut self,
  347. storage: PacketAssemblerSet<'a, SixlowpanFragKey>,
  348. ) -> Self {
  349. self.sixlowpan_fragments = Some(storage);
  350. self
  351. }
  352. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  353. pub fn sixlowpan_out_packet_cache<T>(mut self, storage: T) -> Self
  354. where
  355. T: Into<ManagedSlice<'a, u8>>,
  356. {
  357. self.sixlowpan_out_buffer = Some(storage.into());
  358. self
  359. }
  360. /// Create a network interface using the previously provided configuration.
  361. ///
  362. /// # Panics
  363. /// If a required option is not provided, this function will panic. Required
  364. /// options are:
  365. ///
  366. /// - [ethernet_addr]
  367. /// - [neighbor_cache]
  368. ///
  369. /// [ethernet_addr]: #method.ethernet_addr
  370. /// [neighbor_cache]: #method.neighbor_cache
  371. pub fn finalize<D>(self, device: &mut D) -> Interface<'a>
  372. where
  373. D: for<'d> Device<'d>,
  374. {
  375. let caps = device.capabilities();
  376. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  377. let (hardware_addr, neighbor_cache) = match caps.medium {
  378. #[cfg(feature = "medium-ethernet")]
  379. Medium::Ethernet => (
  380. Some(
  381. self.hardware_addr
  382. .expect("hardware_addr required option was not set"),
  383. ),
  384. Some(
  385. self.neighbor_cache
  386. .expect("neighbor_cache required option was not set"),
  387. ),
  388. ),
  389. #[cfg(feature = "medium-ip")]
  390. Medium::Ip => {
  391. assert!(
  392. self.hardware_addr.is_none(),
  393. "hardware_addr is set, but device medium is IP"
  394. );
  395. assert!(
  396. self.neighbor_cache.is_none(),
  397. "neighbor_cache is set, but device medium is IP"
  398. );
  399. (None, None)
  400. }
  401. #[cfg(feature = "medium-ieee802154")]
  402. Medium::Ieee802154 => (
  403. Some(
  404. self.hardware_addr
  405. .expect("hardware_addr required option was not set"),
  406. ),
  407. Some(
  408. self.neighbor_cache
  409. .expect("neighbor_cache required option was not set"),
  410. ),
  411. ),
  412. };
  413. #[cfg(feature = "medium-ieee802154")]
  414. let mut rand = Rand::new(self.random_seed);
  415. #[cfg(not(feature = "medium-ieee802154"))]
  416. let rand = Rand::new(self.random_seed);
  417. #[cfg(feature = "medium-ieee802154")]
  418. let mut sequence_no;
  419. #[cfg(feature = "medium-ieee802154")]
  420. loop {
  421. sequence_no = (rand.rand_u32() & 0xff) as u8;
  422. if sequence_no != 0 {
  423. break;
  424. }
  425. }
  426. #[cfg(feature = "proto-sixlowpan")]
  427. let mut tag;
  428. #[cfg(feature = "proto-sixlowpan")]
  429. loop {
  430. tag = (rand.rand_u32() & 0xffff) as u16;
  431. if tag != 0 {
  432. break;
  433. }
  434. }
  435. Interface {
  436. fragments: FragmentsBuffer {
  437. #[cfg(feature = "proto-ipv4-fragmentation")]
  438. ipv4_fragments: self
  439. .ipv4_fragments
  440. .expect("Cache for incoming IPv4 fragments is required"),
  441. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  442. sixlowpan_fragments: self
  443. .sixlowpan_fragments
  444. .expect("Cache for incoming 6LoWPAN fragments is required"),
  445. #[cfg(not(any(
  446. feature = "proto-ipv4-fragmentation",
  447. feature = "proto-sixlowpan-fragmentation"
  448. )))]
  449. _lifetime: core::marker::PhantomData,
  450. },
  451. out_packets: OutPackets {
  452. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  453. sixlowpan_out_packet: SixlowpanOutPacket::new(
  454. self.sixlowpan_out_buffer
  455. .expect("Cache for outgoing 6LoWPAN fragments is required"),
  456. ),
  457. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  458. _lifetime: core::marker::PhantomData,
  459. },
  460. inner: InterfaceInner {
  461. now: Instant::from_secs(0),
  462. caps,
  463. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  464. hardware_addr,
  465. ip_addrs: self.ip_addrs,
  466. #[cfg(feature = "proto-ipv4")]
  467. any_ip: self.any_ip,
  468. routes: self.routes,
  469. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  470. neighbor_cache,
  471. #[cfg(feature = "proto-igmp")]
  472. ipv4_multicast_groups: self.ipv4_multicast_groups,
  473. #[cfg(feature = "proto-igmp")]
  474. igmp_report_state: IgmpReportState::Inactive,
  475. #[cfg(feature = "medium-ieee802154")]
  476. sequence_no,
  477. #[cfg(feature = "medium-ieee802154")]
  478. pan_id: self.pan_id,
  479. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  480. tag,
  481. rand,
  482. },
  483. }
  484. }
  485. }
  486. #[derive(Debug, PartialEq)]
  487. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  488. #[cfg(feature = "medium-ethernet")]
  489. enum EthernetPacket<'a> {
  490. #[cfg(feature = "proto-ipv4")]
  491. Arp(ArpRepr),
  492. Ip(IpPacket<'a>),
  493. }
  494. #[derive(Debug, PartialEq)]
  495. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  496. pub(crate) enum IpPacket<'a> {
  497. #[cfg(feature = "proto-ipv4")]
  498. Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)),
  499. #[cfg(feature = "proto-igmp")]
  500. Igmp((Ipv4Repr, IgmpRepr)),
  501. #[cfg(feature = "proto-ipv6")]
  502. Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)),
  503. #[cfg(feature = "socket-raw")]
  504. Raw((IpRepr, &'a [u8])),
  505. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  506. Udp((IpRepr, UdpRepr, &'a [u8])),
  507. #[cfg(feature = "socket-tcp")]
  508. Tcp((IpRepr, TcpRepr<'a>)),
  509. #[cfg(feature = "socket-dhcpv4")]
  510. Dhcpv4((Ipv4Repr, UdpRepr, DhcpRepr<'a>)),
  511. }
  512. impl<'a> IpPacket<'a> {
  513. pub(crate) fn ip_repr(&self) -> IpRepr {
  514. match self {
  515. #[cfg(feature = "proto-ipv4")]
  516. IpPacket::Icmpv4((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  517. #[cfg(feature = "proto-igmp")]
  518. IpPacket::Igmp((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  519. #[cfg(feature = "proto-ipv6")]
  520. IpPacket::Icmpv6((ipv6_repr, _)) => IpRepr::Ipv6(*ipv6_repr),
  521. #[cfg(feature = "socket-raw")]
  522. IpPacket::Raw((ip_repr, _)) => ip_repr.clone(),
  523. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  524. IpPacket::Udp((ip_repr, _, _)) => ip_repr.clone(),
  525. #[cfg(feature = "socket-tcp")]
  526. IpPacket::Tcp((ip_repr, _)) => ip_repr.clone(),
  527. #[cfg(feature = "socket-dhcpv4")]
  528. IpPacket::Dhcpv4((ipv4_repr, _, _)) => IpRepr::Ipv4(*ipv4_repr),
  529. }
  530. }
  531. pub(crate) fn emit_payload(
  532. &self,
  533. _ip_repr: IpRepr,
  534. payload: &mut [u8],
  535. caps: &DeviceCapabilities,
  536. ) {
  537. match self {
  538. #[cfg(feature = "proto-ipv4")]
  539. IpPacket::Icmpv4((_, icmpv4_repr)) => {
  540. icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &caps.checksum)
  541. }
  542. #[cfg(feature = "proto-igmp")]
  543. IpPacket::Igmp((_, igmp_repr)) => {
  544. igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload))
  545. }
  546. #[cfg(feature = "proto-ipv6")]
  547. IpPacket::Icmpv6((_, icmpv6_repr)) => icmpv6_repr.emit(
  548. &_ip_repr.src_addr(),
  549. &_ip_repr.dst_addr(),
  550. &mut Icmpv6Packet::new_unchecked(payload),
  551. &caps.checksum,
  552. ),
  553. #[cfg(feature = "socket-raw")]
  554. IpPacket::Raw((_, raw_packet)) => payload.copy_from_slice(raw_packet),
  555. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  556. IpPacket::Udp((_, udp_repr, inner_payload)) => udp_repr.emit(
  557. &mut UdpPacket::new_unchecked(payload),
  558. &_ip_repr.src_addr(),
  559. &_ip_repr.dst_addr(),
  560. inner_payload.len(),
  561. |buf| buf.copy_from_slice(inner_payload),
  562. &caps.checksum,
  563. ),
  564. #[cfg(feature = "socket-tcp")]
  565. IpPacket::Tcp((_, mut tcp_repr)) => {
  566. // This is a terrible hack to make TCP performance more acceptable on systems
  567. // where the TCP buffers are significantly larger than network buffers,
  568. // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window)
  569. // together with four 1500 B Ethernet receive buffers. If left untreated,
  570. // this would result in our peer pushing our window and sever packet loss.
  571. //
  572. // I'm really not happy about this "solution" but I don't know what else to do.
  573. if let Some(max_burst_size) = caps.max_burst_size {
  574. let mut max_segment_size = caps.max_transmission_unit;
  575. max_segment_size -= _ip_repr.buffer_len();
  576. max_segment_size -= tcp_repr.header_len();
  577. let max_window_size = max_burst_size * max_segment_size;
  578. if tcp_repr.window_len as usize > max_window_size {
  579. tcp_repr.window_len = max_window_size as u16;
  580. }
  581. }
  582. tcp_repr.emit(
  583. &mut TcpPacket::new_unchecked(payload),
  584. &_ip_repr.src_addr(),
  585. &_ip_repr.dst_addr(),
  586. &caps.checksum,
  587. );
  588. }
  589. #[cfg(feature = "socket-dhcpv4")]
  590. IpPacket::Dhcpv4((_, udp_repr, dhcp_repr)) => udp_repr.emit(
  591. &mut UdpPacket::new_unchecked(payload),
  592. &_ip_repr.src_addr(),
  593. &_ip_repr.dst_addr(),
  594. dhcp_repr.buffer_len(),
  595. |buf| dhcp_repr.emit(&mut DhcpPacket::new_unchecked(buf)).unwrap(),
  596. &caps.checksum,
  597. ),
  598. }
  599. }
  600. }
  601. #[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))]
  602. fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize {
  603. // Send back as much of the original payload as will fit within
  604. // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for
  605. // more details.
  606. //
  607. // Since the entire network layer packet must fit within the minimum
  608. // MTU supported, the payload must not exceed the following:
  609. //
  610. // <min mtu> - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size
  611. cmp::min(len, mtu - header_len * 2 - 8)
  612. }
  613. #[cfg(feature = "proto-igmp")]
  614. enum IgmpReportState {
  615. Inactive,
  616. ToGeneralQuery {
  617. version: IgmpVersion,
  618. timeout: Instant,
  619. interval: Duration,
  620. next_index: usize,
  621. },
  622. ToSpecificQuery {
  623. version: IgmpVersion,
  624. timeout: Instant,
  625. group: Ipv4Address,
  626. },
  627. }
  628. impl<'a> Interface<'a> {
  629. /// Get the socket context.
  630. ///
  631. /// The context is needed for some socket methods.
  632. pub fn context(&mut self) -> &mut InterfaceInner<'a> {
  633. &mut self.inner
  634. }
  635. /// Get the HardwareAddress address of the interface.
  636. ///
  637. /// # Panics
  638. /// This function panics if the medium is not Ethernet or Ieee802154.
  639. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  640. pub fn hardware_addr(&self) -> HardwareAddress {
  641. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  642. assert!(self.inner.caps.medium == Medium::Ethernet);
  643. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  644. assert!(self.inner.caps.medium == Medium::Ieee802154);
  645. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  646. assert!(
  647. self.inner.caps.medium == Medium::Ethernet
  648. || self.inner.caps.medium == Medium::Ieee802154
  649. );
  650. self.inner.hardware_addr.unwrap()
  651. }
  652. /// Set the HardwareAddress address of the interface.
  653. ///
  654. /// # Panics
  655. /// This function panics if the address is not unicast, and if the medium is not Ethernet or
  656. /// Ieee802154.
  657. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  658. pub fn set_hardware_addr(&mut self, addr: HardwareAddress) {
  659. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  660. assert!(self.inner.caps.medium == Medium::Ethernet);
  661. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  662. assert!(self.inner.caps.medium == Medium::Ieee802154);
  663. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  664. assert!(
  665. self.inner.caps.medium == Medium::Ethernet
  666. || self.inner.caps.medium == Medium::Ieee802154
  667. );
  668. InterfaceInner::check_hardware_addr(&addr);
  669. self.inner.hardware_addr = Some(addr);
  670. }
  671. /// Add an address to a list of subscribed multicast IP addresses.
  672. ///
  673. /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent`
  674. /// indicates whether an initial immediate announcement has been sent.
  675. pub fn join_multicast_group<D, T: Into<IpAddress>>(
  676. &mut self,
  677. device: &mut D,
  678. addr: T,
  679. timestamp: Instant,
  680. ) -> Result<bool>
  681. where
  682. D: for<'d> Device<'d>,
  683. {
  684. self.inner.now = timestamp;
  685. match addr.into() {
  686. #[cfg(feature = "proto-igmp")]
  687. IpAddress::Ipv4(addr) => {
  688. let is_not_new = self
  689. .inner
  690. .ipv4_multicast_groups
  691. .insert(addr, ())
  692. .map_err(|_| Error::Exhausted)?
  693. .is_some();
  694. if is_not_new {
  695. Ok(false)
  696. } else if let Some(pkt) = self.inner.igmp_report_packet(IgmpVersion::Version2, addr)
  697. {
  698. // Send initial membership report
  699. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  700. self.inner.dispatch_ip(tx_token, pkt, None)?;
  701. Ok(true)
  702. } else {
  703. Ok(false)
  704. }
  705. }
  706. // Multicast is not yet implemented for other address families
  707. #[allow(unreachable_patterns)]
  708. _ => Err(Error::Unaddressable),
  709. }
  710. }
  711. /// Remove an address from the subscribed multicast IP addresses.
  712. ///
  713. /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent`
  714. /// indicates whether an immediate leave packet has been sent.
  715. pub fn leave_multicast_group<D, T: Into<IpAddress>>(
  716. &mut self,
  717. device: &mut D,
  718. addr: T,
  719. timestamp: Instant,
  720. ) -> Result<bool>
  721. where
  722. D: for<'d> Device<'d>,
  723. {
  724. self.inner.now = timestamp;
  725. match addr.into() {
  726. #[cfg(feature = "proto-igmp")]
  727. IpAddress::Ipv4(addr) => {
  728. let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr).is_none();
  729. if was_not_present {
  730. Ok(false)
  731. } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) {
  732. // Send group leave packet
  733. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  734. self.inner.dispatch_ip(tx_token, pkt, None)?;
  735. Ok(true)
  736. } else {
  737. Ok(false)
  738. }
  739. }
  740. // Multicast is not yet implemented for other address families
  741. #[allow(unreachable_patterns)]
  742. _ => Err(Error::Unaddressable),
  743. }
  744. }
  745. /// Check whether the interface listens to given destination multicast IP address.
  746. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  747. self.inner.has_multicast_group(addr)
  748. }
  749. /// Get the IP addresses of the interface.
  750. pub fn ip_addrs(&self) -> &[IpCidr] {
  751. self.inner.ip_addrs.as_ref()
  752. }
  753. /// Get the first IPv4 address if present.
  754. #[cfg(feature = "proto-ipv4")]
  755. pub fn ipv4_addr(&self) -> Option<Ipv4Address> {
  756. self.ip_addrs()
  757. .iter()
  758. .find_map(|cidr| match cidr.address() {
  759. IpAddress::Ipv4(addr) => Some(addr),
  760. #[allow(unreachable_patterns)]
  761. _ => None,
  762. })
  763. }
  764. /// Update the IP addresses of the interface.
  765. ///
  766. /// # Panics
  767. /// This function panics if any of the addresses are not unicast.
  768. pub fn update_ip_addrs<F: FnOnce(&mut ManagedSlice<'a, IpCidr>)>(&mut self, f: F) {
  769. f(&mut self.inner.ip_addrs);
  770. InterfaceInner::flush_cache(&mut self.inner);
  771. InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
  772. }
  773. /// Check whether the interface has the given IP address assigned.
  774. pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  775. self.inner.has_ip_addr(addr)
  776. }
  777. /// Get the first IPv4 address of the interface.
  778. #[cfg(feature = "proto-ipv4")]
  779. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  780. self.inner.ipv4_address()
  781. }
  782. pub fn routes(&self) -> &Routes<'a> {
  783. &self.inner.routes
  784. }
  785. pub fn routes_mut(&mut self) -> &mut Routes<'a> {
  786. &mut self.inner.routes
  787. }
  788. /// Transmit packets queued in the given sockets, and receive packets queued
  789. /// in the device.
  790. ///
  791. /// This function returns a boolean value indicating whether any packets were
  792. /// processed or emitted, and thus, whether the readiness of any socket might
  793. /// have changed.
  794. ///
  795. /// # Errors
  796. /// This method will routinely return errors in response to normal network
  797. /// activity as well as certain boundary conditions such as buffer exhaustion.
  798. /// These errors are provided as an aid for troubleshooting, and are meant
  799. /// to be logged and ignored.
  800. ///
  801. /// As a special case, `Err(Error::Unrecognized)` is returned in response to
  802. /// packets containing any unsupported protocol, option, or form, which is
  803. /// a very common occurrence and on a production system it should not even
  804. /// be logged.
  805. pub fn poll<D>(
  806. &mut self,
  807. timestamp: Instant,
  808. device: &mut D,
  809. sockets: &mut SocketSet<'_>,
  810. ) -> Result<bool>
  811. where
  812. D: for<'d> Device<'d>,
  813. {
  814. self.inner.now = timestamp;
  815. #[cfg(feature = "proto-ipv4-fragmentation")]
  816. if let Err(e) = self
  817. .fragments
  818. .ipv4_fragments
  819. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  820. {
  821. return Err(e);
  822. }
  823. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  824. if let Err(e) = self
  825. .fragments
  826. .sixlowpan_fragments
  827. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  828. {
  829. return Err(e);
  830. }
  831. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  832. match self.sixlowpan_egress(device) {
  833. Ok(true) => return Ok(true),
  834. Err(e) => return Err(e),
  835. _ => (),
  836. }
  837. let mut readiness_may_have_changed = false;
  838. loop {
  839. let processed_any = self.socket_ingress(device, sockets);
  840. let emitted_any = self.socket_egress(device, sockets);
  841. #[cfg(feature = "proto-igmp")]
  842. self.igmp_egress(device)?;
  843. if processed_any || emitted_any {
  844. readiness_may_have_changed = true;
  845. } else {
  846. break;
  847. }
  848. }
  849. Ok(readiness_may_have_changed)
  850. }
  851. /// Return a _soft deadline_ for calling [poll] the next time.
  852. /// The [Instant] returned is the time at which you should call [poll] next.
  853. /// It is harmless (but wastes energy) to call it before the [Instant], and
  854. /// potentially harmful (impacting quality of service) to call it after the
  855. /// [Instant]
  856. ///
  857. /// [poll]: #method.poll
  858. /// [Instant]: struct.Instant.html
  859. pub fn poll_at(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Instant> {
  860. self.inner.now = timestamp;
  861. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  862. if !self.out_packets.all_transmitted() {
  863. return Some(Instant::from_millis(0));
  864. }
  865. let inner = &mut self.inner;
  866. sockets
  867. .items()
  868. .filter_map(move |item| {
  869. let socket_poll_at = item.socket.poll_at(inner);
  870. match item
  871. .meta
  872. .poll_at(socket_poll_at, |ip_addr| inner.has_neighbor(&ip_addr))
  873. {
  874. PollAt::Ingress => None,
  875. PollAt::Time(instant) => Some(instant),
  876. PollAt::Now => Some(Instant::from_millis(0)),
  877. }
  878. })
  879. .min()
  880. }
  881. /// Return an _advisory wait time_ for calling [poll] the next time.
  882. /// The [Duration] returned is the time left to wait before calling [poll] next.
  883. /// It is harmless (but wastes energy) to call it before the [Duration] has passed,
  884. /// and potentially harmful (impacting quality of service) to call it after the
  885. /// [Duration] has passed.
  886. ///
  887. /// [poll]: #method.poll
  888. /// [Duration]: struct.Duration.html
  889. pub fn poll_delay(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Duration> {
  890. match self.poll_at(timestamp, sockets) {
  891. Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp),
  892. Some(_) => Some(Duration::from_millis(0)),
  893. _ => None,
  894. }
  895. }
  896. fn socket_ingress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  897. where
  898. D: for<'d> Device<'d>,
  899. {
  900. let mut processed_any = false;
  901. let Self {
  902. inner,
  903. fragments: ref mut _fragments,
  904. out_packets: _out_packets,
  905. } = self;
  906. while let Some((rx_token, tx_token)) = device.receive() {
  907. let res = rx_token.consume(inner.now, |frame| {
  908. match inner.caps.medium {
  909. #[cfg(feature = "medium-ethernet")]
  910. Medium::Ethernet => {
  911. if let Some(packet) = inner.process_ethernet(sockets, &frame, _fragments) {
  912. if let Err(err) = inner.dispatch(tx_token, packet) {
  913. net_debug!("Failed to send response: {}", err);
  914. }
  915. }
  916. }
  917. #[cfg(feature = "medium-ip")]
  918. Medium::Ip => {
  919. if let Some(packet) = inner.process_ip(sockets, &frame, _fragments) {
  920. if let Err(err) = inner.dispatch_ip(tx_token, packet, None) {
  921. net_debug!("Failed to send response: {}", err);
  922. }
  923. }
  924. }
  925. #[cfg(feature = "medium-ieee802154")]
  926. Medium::Ieee802154 => {
  927. if let Some(packet) = inner.process_ieee802154(sockets, &frame, _fragments)
  928. {
  929. if let Err(err) =
  930. inner.dispatch_ip(tx_token, packet, Some(_out_packets))
  931. {
  932. net_debug!("Failed to send response: {}", err);
  933. }
  934. }
  935. }
  936. }
  937. processed_any = true;
  938. Ok(())
  939. });
  940. if let Err(err) = res {
  941. net_debug!("Failed to consume RX token: {}", err);
  942. }
  943. }
  944. processed_any
  945. }
  946. fn socket_egress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  947. where
  948. D: for<'d> Device<'d>,
  949. {
  950. let Self {
  951. inner,
  952. out_packets: _out_packets,
  953. ..
  954. } = self;
  955. let _caps = device.capabilities();
  956. let mut emitted_any = false;
  957. for item in sockets.items_mut() {
  958. if !item
  959. .meta
  960. .egress_permitted(inner.now, |ip_addr| inner.has_neighbor(&ip_addr))
  961. {
  962. continue;
  963. }
  964. let mut neighbor_addr = None;
  965. let mut respond = |inner: &mut InterfaceInner, response: IpPacket| {
  966. neighbor_addr = Some(response.ip_repr().dst_addr());
  967. match device.transmit().ok_or(Error::Exhausted) {
  968. Ok(_t) => {
  969. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  970. if let Err(_e) = inner.dispatch_ip(_t, response, Some(_out_packets)) {
  971. net_debug!("failed to dispatch IP: {}", _e);
  972. }
  973. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  974. if let Err(_e) = inner.dispatch_ip(_t, response, None) {
  975. net_debug!("failed to dispatch IP: {}", _e);
  976. }
  977. emitted_any = true;
  978. }
  979. Err(e) => {
  980. net_debug!("failed to transmit IP: {}", e);
  981. }
  982. }
  983. Ok(())
  984. };
  985. let result = match &mut item.socket {
  986. #[cfg(feature = "socket-raw")]
  987. Socket::Raw(socket) => socket.dispatch(inner, |inner, response| {
  988. respond(inner, IpPacket::Raw(response))
  989. }),
  990. #[cfg(feature = "socket-icmp")]
  991. Socket::Icmp(socket) => socket.dispatch(inner, |inner, response| match response {
  992. #[cfg(feature = "proto-ipv4")]
  993. (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => {
  994. respond(inner, IpPacket::Icmpv4((ipv4_repr, icmpv4_repr)))
  995. }
  996. #[cfg(feature = "proto-ipv6")]
  997. (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => {
  998. respond(inner, IpPacket::Icmpv6((ipv6_repr, icmpv6_repr)))
  999. }
  1000. #[allow(unreachable_patterns)]
  1001. _ => unreachable!(),
  1002. }),
  1003. #[cfg(feature = "socket-udp")]
  1004. Socket::Udp(socket) => socket.dispatch(inner, |inner, response| {
  1005. respond(inner, IpPacket::Udp(response))
  1006. }),
  1007. #[cfg(feature = "socket-tcp")]
  1008. Socket::Tcp(socket) => socket.dispatch(inner, |inner, response| {
  1009. respond(inner, IpPacket::Tcp(response))
  1010. }),
  1011. #[cfg(feature = "socket-dhcpv4")]
  1012. Socket::Dhcpv4(socket) => socket.dispatch(inner, |inner, response| {
  1013. respond(inner, IpPacket::Dhcpv4(response))
  1014. }),
  1015. #[cfg(feature = "socket-dns")]
  1016. Socket::Dns(ref mut socket) => socket.dispatch(inner, |inner, response| {
  1017. respond(inner, IpPacket::Udp(response))
  1018. }),
  1019. };
  1020. match result {
  1021. Err(Error::Exhausted) => break, // Device buffer full.
  1022. Err(Error::Unaddressable) => {
  1023. // `NeighborCache` already takes care of rate limiting the neighbor discovery
  1024. // requests from the socket. However, without an additional rate limiting
  1025. // mechanism, we would spin on every socket that has yet to discover its
  1026. // neighbor.
  1027. item.meta.neighbor_missing(
  1028. inner.now,
  1029. neighbor_addr.expect("non-IP response packet"),
  1030. );
  1031. break;
  1032. }
  1033. Err(err) => {
  1034. net_debug!(
  1035. "{}: cannot dispatch egress packet: {}",
  1036. item.meta.handle,
  1037. err
  1038. );
  1039. }
  1040. Ok(()) => {}
  1041. }
  1042. }
  1043. emitted_any
  1044. }
  1045. /// Depending on `igmp_report_state` and the therein contained
  1046. /// timeouts, send IGMP membership reports.
  1047. #[cfg(feature = "proto-igmp")]
  1048. fn igmp_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1049. where
  1050. D: for<'d> Device<'d>,
  1051. {
  1052. match self.inner.igmp_report_state {
  1053. IgmpReportState::ToSpecificQuery {
  1054. version,
  1055. timeout,
  1056. group,
  1057. } if self.inner.now >= timeout => {
  1058. if let Some(pkt) = self.inner.igmp_report_packet(version, group) {
  1059. // Send initial membership report
  1060. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1061. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1062. }
  1063. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1064. Ok(true)
  1065. }
  1066. IgmpReportState::ToGeneralQuery {
  1067. version,
  1068. timeout,
  1069. interval,
  1070. next_index,
  1071. } if self.inner.now >= timeout => {
  1072. let addr = self
  1073. .inner
  1074. .ipv4_multicast_groups
  1075. .iter()
  1076. .nth(next_index)
  1077. .map(|(addr, ())| *addr);
  1078. match addr {
  1079. Some(addr) => {
  1080. if let Some(pkt) = self.inner.igmp_report_packet(version, addr) {
  1081. // Send initial membership report
  1082. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1083. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1084. }
  1085. let next_timeout = (timeout + interval).max(self.inner.now);
  1086. self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1087. version,
  1088. timeout: next_timeout,
  1089. interval,
  1090. next_index: next_index + 1,
  1091. };
  1092. Ok(true)
  1093. }
  1094. None => {
  1095. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1096. Ok(false)
  1097. }
  1098. }
  1099. }
  1100. _ => Ok(false),
  1101. }
  1102. }
  1103. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1104. fn sixlowpan_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1105. where
  1106. D: for<'d> Device<'d>,
  1107. {
  1108. let SixlowpanOutPacket {
  1109. packet_len,
  1110. sent_bytes,
  1111. ..
  1112. } = &self.out_packets.sixlowpan_out_packet;
  1113. if *packet_len == 0 {
  1114. return Ok(false);
  1115. }
  1116. if *packet_len >= *sent_bytes {
  1117. match device.transmit().ok_or(Error::Exhausted) {
  1118. Ok(tx_token) => {
  1119. if let Err(e) = self.inner.dispatch_ieee802154_out_packet(
  1120. tx_token,
  1121. &mut self.out_packets.sixlowpan_out_packet,
  1122. ) {
  1123. net_debug!("failed to transmit: {}", e);
  1124. }
  1125. // Reset the buffer when we transmitted everything.
  1126. if self.out_packets.sixlowpan_out_packet.finished() {
  1127. self.out_packets.sixlowpan_out_packet.reset();
  1128. }
  1129. }
  1130. Err(e) => {
  1131. net_debug!("failed to transmit: {}", e);
  1132. }
  1133. }
  1134. Ok(true)
  1135. } else {
  1136. Ok(false)
  1137. }
  1138. }
  1139. }
  1140. impl<'a> InterfaceInner<'a> {
  1141. #[allow(unused)] // unused depending on which sockets are enabled
  1142. pub(crate) fn now(&self) -> Instant {
  1143. self.now
  1144. }
  1145. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1146. #[allow(unused)] // unused depending on which sockets are enabled
  1147. pub(crate) fn hardware_addr(&self) -> Option<HardwareAddress> {
  1148. self.hardware_addr
  1149. }
  1150. #[allow(unused)] // unused depending on which sockets are enabled
  1151. pub(crate) fn checksum_caps(&self) -> ChecksumCapabilities {
  1152. self.caps.checksum.clone()
  1153. }
  1154. #[allow(unused)] // unused depending on which sockets are enabled
  1155. pub(crate) fn ip_mtu(&self) -> usize {
  1156. self.caps.ip_mtu()
  1157. }
  1158. #[allow(unused)] // unused depending on which sockets are enabled, and in tests
  1159. pub(crate) fn rand(&mut self) -> &mut Rand {
  1160. &mut self.rand
  1161. }
  1162. #[allow(unused)] // unused depending on which sockets are enabled
  1163. pub(crate) fn get_source_address(&mut self, dst_addr: IpAddress) -> Option<IpAddress> {
  1164. let v = dst_addr.version();
  1165. for cidr in self.ip_addrs.iter() {
  1166. let addr = cidr.address();
  1167. if addr.version() == v {
  1168. return Some(addr);
  1169. }
  1170. }
  1171. None
  1172. }
  1173. #[cfg(feature = "proto-ipv4")]
  1174. #[allow(unused)]
  1175. pub(crate) fn get_source_address_ipv4(
  1176. &mut self,
  1177. _dst_addr: Ipv4Address,
  1178. ) -> Option<Ipv4Address> {
  1179. for cidr in self.ip_addrs.iter() {
  1180. #[allow(irrefutable_let_patterns)] // if only ipv4 is enabled
  1181. if let IpCidr::Ipv4(cidr) = cidr {
  1182. return Some(cidr.address());
  1183. }
  1184. }
  1185. None
  1186. }
  1187. #[cfg(feature = "proto-ipv6")]
  1188. #[allow(unused)]
  1189. pub(crate) fn get_source_address_ipv6(
  1190. &mut self,
  1191. _dst_addr: Ipv6Address,
  1192. ) -> Option<Ipv6Address> {
  1193. for cidr in self.ip_addrs.iter() {
  1194. #[allow(irrefutable_let_patterns)] // if only ipv6 is enabled
  1195. if let IpCidr::Ipv6(cidr) = cidr {
  1196. return Some(cidr.address());
  1197. }
  1198. }
  1199. None
  1200. }
  1201. #[cfg(test)]
  1202. pub(crate) fn mock() -> Self {
  1203. Self {
  1204. caps: DeviceCapabilities {
  1205. #[cfg(feature = "medium-ethernet")]
  1206. medium: crate::phy::Medium::Ethernet,
  1207. #[cfg(not(feature = "medium-ethernet"))]
  1208. medium: crate::phy::Medium::Ip,
  1209. checksum: crate::phy::ChecksumCapabilities {
  1210. #[cfg(feature = "proto-ipv4")]
  1211. icmpv4: crate::phy::Checksum::Both,
  1212. #[cfg(feature = "proto-ipv6")]
  1213. icmpv6: crate::phy::Checksum::Both,
  1214. ipv4: crate::phy::Checksum::Both,
  1215. tcp: crate::phy::Checksum::Both,
  1216. udp: crate::phy::Checksum::Both,
  1217. },
  1218. max_burst_size: None,
  1219. #[cfg(feature = "medium-ethernet")]
  1220. max_transmission_unit: 1514,
  1221. #[cfg(not(feature = "medium-ethernet"))]
  1222. max_transmission_unit: 1500,
  1223. },
  1224. now: Instant::from_millis_const(0),
  1225. ip_addrs: ManagedSlice::Owned(vec![
  1226. #[cfg(feature = "proto-ipv4")]
  1227. IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address::new(192, 168, 1, 1), 24)),
  1228. #[cfg(feature = "proto-ipv6")]
  1229. IpCidr::Ipv6(Ipv6Cidr::new(
  1230. Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),
  1231. 64,
  1232. )),
  1233. ]),
  1234. rand: Rand::new(1234),
  1235. routes: Routes::new(&mut [][..]),
  1236. #[cfg(feature = "proto-ipv4")]
  1237. any_ip: false,
  1238. #[cfg(feature = "medium-ieee802154")]
  1239. pan_id: Some(crate::wire::Ieee802154Pan(0xabcd)),
  1240. #[cfg(feature = "medium-ieee802154")]
  1241. sequence_no: 1,
  1242. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1243. tag: 1,
  1244. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1245. hardware_addr: Some(crate::wire::HardwareAddress::Ethernet(
  1246. crate::wire::EthernetAddress([0x02, 0x02, 0x02, 0x02, 0x02, 0x02]),
  1247. )),
  1248. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1249. neighbor_cache: None,
  1250. #[cfg(feature = "proto-igmp")]
  1251. igmp_report_state: IgmpReportState::Inactive,
  1252. #[cfg(feature = "proto-igmp")]
  1253. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  1254. }
  1255. }
  1256. #[cfg(test)]
  1257. #[allow(unused)] // unused depending on which sockets are enabled
  1258. pub(crate) fn set_now(&mut self, now: Instant) {
  1259. self.now = now
  1260. }
  1261. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1262. fn check_hardware_addr(addr: &HardwareAddress) {
  1263. if !addr.is_unicast() {
  1264. panic!("Ethernet address {} is not unicast", addr)
  1265. }
  1266. }
  1267. fn check_ip_addrs(addrs: &[IpCidr]) {
  1268. for cidr in addrs {
  1269. if !cidr.address().is_unicast() && !cidr.address().is_unspecified() {
  1270. panic!("IP address {} is not unicast", cidr.address())
  1271. }
  1272. }
  1273. }
  1274. #[cfg(feature = "medium-ieee802154")]
  1275. fn get_sequence_number(&mut self) -> u8 {
  1276. let no = self.sequence_no;
  1277. self.sequence_no = self.sequence_no.wrapping_add(1);
  1278. no
  1279. }
  1280. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1281. fn get_sixlowpan_fragment_tag(&mut self) -> u16 {
  1282. let tag = self.tag;
  1283. self.tag = self.tag.wrapping_add(1);
  1284. tag
  1285. }
  1286. /// Determine if the given `Ipv6Address` is the solicited node
  1287. /// multicast address for a IPv6 addresses assigned to the interface.
  1288. /// See [RFC 4291 § 2.7.1] for more details.
  1289. ///
  1290. /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
  1291. #[cfg(feature = "proto-ipv6")]
  1292. pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool {
  1293. self.ip_addrs.iter().any(|cidr| {
  1294. match *cidr {
  1295. IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK => {
  1296. // Take the lower order 24 bits of the IPv6 address and
  1297. // append those bits to FF02:0:0:0:0:1:FF00::/104.
  1298. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..]
  1299. }
  1300. _ => false,
  1301. }
  1302. })
  1303. }
  1304. /// Check whether the interface has the given IP address assigned.
  1305. fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1306. let addr = addr.into();
  1307. self.ip_addrs.iter().any(|probe| probe.address() == addr)
  1308. }
  1309. /// Get the first IPv4 address of the interface.
  1310. #[cfg(feature = "proto-ipv4")]
  1311. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  1312. self.ip_addrs.iter().find_map(|addr| match *addr {
  1313. IpCidr::Ipv4(cidr) => Some(cidr.address()),
  1314. #[cfg(feature = "proto-ipv6")]
  1315. IpCidr::Ipv6(_) => None,
  1316. })
  1317. }
  1318. /// Check whether the interface listens to given destination multicast IP address.
  1319. ///
  1320. /// If built without feature `proto-igmp` this function will
  1321. /// always return `false`.
  1322. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1323. match addr.into() {
  1324. #[cfg(feature = "proto-igmp")]
  1325. IpAddress::Ipv4(key) => {
  1326. key == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1327. || self.ipv4_multicast_groups.get(&key).is_some()
  1328. }
  1329. #[allow(unreachable_patterns)]
  1330. _ => false,
  1331. }
  1332. }
  1333. #[cfg(feature = "medium-ethernet")]
  1334. fn process_ethernet<'frame, T: AsRef<[u8]>>(
  1335. &mut self,
  1336. sockets: &mut SocketSet,
  1337. frame: &'frame T,
  1338. _fragments: &'frame mut FragmentsBuffer<'a>,
  1339. ) -> Option<EthernetPacket<'frame>> {
  1340. let eth_frame = check!(EthernetFrame::new_checked(frame));
  1341. // Ignore any packets not directed to our hardware address or any of the multicast groups.
  1342. if !eth_frame.dst_addr().is_broadcast()
  1343. && !eth_frame.dst_addr().is_multicast()
  1344. && HardwareAddress::Ethernet(eth_frame.dst_addr()) != self.hardware_addr.unwrap()
  1345. {
  1346. return None;
  1347. }
  1348. match eth_frame.ethertype() {
  1349. #[cfg(feature = "proto-ipv4")]
  1350. EthernetProtocol::Arp => self.process_arp(self.now, &eth_frame),
  1351. #[cfg(feature = "proto-ipv4")]
  1352. EthernetProtocol::Ipv4 => {
  1353. let ipv4_packet = check!(Ipv4Packet::new_checked(eth_frame.payload()));
  1354. cfg_if::cfg_if! {
  1355. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1356. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1357. .map(EthernetPacket::Ip) } else {
  1358. self.process_ipv4(sockets, &ipv4_packet, None).map(EthernetPacket::Ip)
  1359. }
  1360. }
  1361. }
  1362. #[cfg(feature = "proto-ipv6")]
  1363. EthernetProtocol::Ipv6 => {
  1364. let ipv6_packet = check!(Ipv6Packet::new_checked(eth_frame.payload()));
  1365. self.process_ipv6(sockets, &ipv6_packet)
  1366. .map(EthernetPacket::Ip)
  1367. }
  1368. // Drop all other traffic.
  1369. _ => None,
  1370. }
  1371. }
  1372. #[cfg(feature = "medium-ip")]
  1373. fn process_ip<'frame, T: AsRef<[u8]>>(
  1374. &mut self,
  1375. sockets: &mut SocketSet,
  1376. ip_payload: &'frame T,
  1377. _fragments: &'frame mut FragmentsBuffer<'a>,
  1378. ) -> Option<IpPacket<'frame>> {
  1379. match IpVersion::of_packet(ip_payload.as_ref()) {
  1380. #[cfg(feature = "proto-ipv4")]
  1381. Ok(IpVersion::Ipv4) => {
  1382. let ipv4_packet = check!(Ipv4Packet::new_checked(ip_payload));
  1383. cfg_if::cfg_if! {
  1384. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1385. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1386. } else {
  1387. self.process_ipv4(sockets, &ipv4_packet, None)
  1388. }
  1389. }
  1390. }
  1391. #[cfg(feature = "proto-ipv6")]
  1392. Ok(IpVersion::Ipv6) => {
  1393. let ipv6_packet = check!(Ipv6Packet::new_checked(ip_payload));
  1394. self.process_ipv6(sockets, &ipv6_packet)
  1395. }
  1396. // Drop all other traffic.
  1397. _ => None,
  1398. }
  1399. }
  1400. #[cfg(feature = "medium-ieee802154")]
  1401. fn process_ieee802154<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1402. &mut self,
  1403. sockets: &mut SocketSet,
  1404. sixlowpan_payload: &'payload T,
  1405. _fragments: &'output mut FragmentsBuffer<'a>,
  1406. ) -> Option<IpPacket<'output>> {
  1407. let ieee802154_frame = check!(Ieee802154Frame::new_checked(sixlowpan_payload));
  1408. let ieee802154_repr = check!(Ieee802154Repr::parse(&ieee802154_frame));
  1409. if ieee802154_repr.frame_type != Ieee802154FrameType::Data {
  1410. return None;
  1411. }
  1412. // Drop frames when the user has set a PAN id and the PAN id from frame is not equal to this
  1413. // When the user didn't set a PAN id (so it is None), then we accept all PAN id's.
  1414. // We always accept the broadcast PAN id.
  1415. if self.pan_id.is_some()
  1416. && ieee802154_repr.dst_pan_id != self.pan_id
  1417. && ieee802154_repr.dst_pan_id != Some(Ieee802154Pan::BROADCAST)
  1418. {
  1419. net_debug!(
  1420. "IEEE802.15.4: dropping {:?} because not our PAN id (or not broadcast)",
  1421. ieee802154_repr
  1422. );
  1423. return None;
  1424. }
  1425. match ieee802154_frame.payload() {
  1426. Some(payload) => {
  1427. cfg_if::cfg_if! {
  1428. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  1429. self.process_sixlowpan(sockets, &ieee802154_repr, payload, Some(&mut _fragments.sixlowpan_fragments))
  1430. } else {
  1431. self.process_sixlowpan(sockets, &ieee802154_repr, payload, None)
  1432. }
  1433. }
  1434. }
  1435. None => None,
  1436. }
  1437. }
  1438. #[cfg(feature = "proto-sixlowpan")]
  1439. fn process_sixlowpan<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1440. &mut self,
  1441. sockets: &mut SocketSet,
  1442. ieee802154_repr: &Ieee802154Repr,
  1443. payload: &'payload T,
  1444. _fragments: Option<&'output mut PacketAssemblerSet<'a, SixlowpanFragKey>>,
  1445. ) -> Option<IpPacket<'output>> {
  1446. let payload = match check!(SixlowpanPacket::dispatch(payload)) {
  1447. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  1448. SixlowpanPacket::FragmentHeader => {
  1449. net_debug!("Fragmentation is not supported, use the `proto-sixlowpan-fragmentation` feature to add support.");
  1450. return None;
  1451. }
  1452. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1453. SixlowpanPacket::FragmentHeader => {
  1454. let fragments = _fragments.unwrap();
  1455. // We have a fragment header, which means we cannot process the 6LoWPAN packet,
  1456. // unless we have a complete one after processing this fragment.
  1457. let frag = check!(SixlowpanFragPacket::new_checked(payload));
  1458. // The key specifies to which 6LoWPAN fragment it belongs too.
  1459. // It is based on the link layer addresses, the tag and the size.
  1460. let key = frag.get_key(ieee802154_repr);
  1461. // The offset of this fragment in increments of 8 octets.
  1462. let offset = frag.datagram_offset() as usize * 8;
  1463. if frag.is_first_fragment() {
  1464. // The first fragment contains the total size of the IPv6 packet.
  1465. // However, we received a packet that is compressed following the 6LoWPAN
  1466. // standard. This means we need to convert the IPv6 packet size to a 6LoWPAN
  1467. // packet size. The packet size can be different because of first the
  1468. // compression of the IP header and when UDP is used (because the UDP header
  1469. // can also be compressed). Other headers are not compressed by 6LoWPAN.
  1470. let iphc = check!(SixlowpanIphcPacket::new_checked(frag.payload()));
  1471. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1472. &iphc,
  1473. ieee802154_repr.src_addr,
  1474. ieee802154_repr.dst_addr,
  1475. ));
  1476. // The uncompressed header size always starts with 40, since this is the size
  1477. // of a IPv6 header.
  1478. let mut uncompressed_header_size = 40;
  1479. let mut compressed_header_size = iphc.header_len();
  1480. // We need to check if we have an UDP packet, since this header can also be
  1481. // compressed by 6LoWPAN. We currently don't support extension headers yet.
  1482. match iphc_repr.next_header {
  1483. SixlowpanNextHeader::Compressed => {
  1484. match check!(SixlowpanNhcPacket::dispatch(iphc.payload())) {
  1485. SixlowpanNhcPacket::ExtHeader => {
  1486. net_debug!("6LoWPAN: extension headers not supported");
  1487. return None;
  1488. }
  1489. SixlowpanNhcPacket::UdpHeader => {
  1490. let udp_packet =
  1491. check!(SixlowpanUdpNhcPacket::new_checked(iphc.payload()));
  1492. uncompressed_header_size += 8;
  1493. compressed_header_size +=
  1494. 1 + udp_packet.ports_size() + udp_packet.checksum_size();
  1495. }
  1496. }
  1497. }
  1498. SixlowpanNextHeader::Uncompressed(_) => (),
  1499. }
  1500. // We reserve a spot in the packet assembler set and add the required
  1501. // information to the packet assembler.
  1502. // This information is the total size of the packet when it is fully assmbled.
  1503. // We also pass the header size, since this is needed when other fragments
  1504. // (other than the first one) are added.
  1505. check!(check!(fragments.reserve_with_key(&key)).start(
  1506. Some(
  1507. frag.datagram_size() as usize - uncompressed_header_size
  1508. + compressed_header_size
  1509. ),
  1510. self.now + Duration::from_secs(60),
  1511. -((uncompressed_header_size - compressed_header_size) as isize),
  1512. ));
  1513. }
  1514. let frags = check!(fragments.get_packet_assembler_mut(&key));
  1515. net_trace!("6LoWPAN: received packet fragment");
  1516. // Add the fragment to the packet assembler.
  1517. match frags.add(frag.payload(), offset) {
  1518. Ok(true) => {
  1519. net_trace!("6LoWPAN: fragmented packet now complete");
  1520. check!(fragments.get_assembled_packet(&key))
  1521. }
  1522. Ok(false) => {
  1523. return None;
  1524. }
  1525. Err(Error::PacketAssemblerOverlap) => {
  1526. net_trace!("6LoWPAN: overlap in packet");
  1527. frags.mark_discarded();
  1528. return None;
  1529. }
  1530. Err(_) => return None,
  1531. }
  1532. }
  1533. SixlowpanPacket::IphcHeader => payload.as_ref(),
  1534. };
  1535. // At this point we should have a valid 6LoWPAN packet.
  1536. // The first header needs to be an IPHC header.
  1537. let iphc_packet = check!(SixlowpanIphcPacket::new_checked(payload));
  1538. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1539. &iphc_packet,
  1540. ieee802154_repr.src_addr,
  1541. ieee802154_repr.dst_addr,
  1542. ));
  1543. let payload = iphc_packet.payload();
  1544. let mut ipv6_repr = Ipv6Repr {
  1545. src_addr: iphc_repr.src_addr,
  1546. dst_addr: iphc_repr.dst_addr,
  1547. hop_limit: iphc_repr.hop_limit,
  1548. next_header: IpProtocol::Unknown(0),
  1549. payload_len: 40,
  1550. };
  1551. match iphc_repr.next_header {
  1552. SixlowpanNextHeader::Compressed => {
  1553. match check!(SixlowpanNhcPacket::dispatch(payload)) {
  1554. SixlowpanNhcPacket::ExtHeader => {
  1555. net_debug!("Extension headers are currently not supported for 6LoWPAN");
  1556. None
  1557. }
  1558. #[cfg(not(feature = "socket-udp"))]
  1559. SixlowpanNhcPacket::UdpHeader => {
  1560. net_debug!("UDP support is disabled, enable cargo feature `socket-udp`.");
  1561. None
  1562. }
  1563. #[cfg(feature = "socket-udp")]
  1564. SixlowpanNhcPacket::UdpHeader => {
  1565. let udp_packet = check!(SixlowpanUdpNhcPacket::new_checked(payload));
  1566. ipv6_repr.next_header = IpProtocol::Udp;
  1567. ipv6_repr.payload_len += 8 + udp_packet.payload().len();
  1568. let udp_repr = check!(SixlowpanUdpNhcRepr::parse(
  1569. &udp_packet,
  1570. &iphc_repr.src_addr,
  1571. &iphc_repr.dst_addr,
  1572. ));
  1573. // Look for UDP sockets that will accept the UDP packet.
  1574. // If it does not accept the packet, then send an ICMP message.
  1575. //
  1576. // NOTE(thvdveld): this is currently the same code as in self.process_udp.
  1577. // However, we cannot use that one because the payload passed to it is a
  1578. // normal IPv6 UDP payload, which is not what we have here.
  1579. for udp_socket in sockets
  1580. .items_mut()
  1581. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  1582. {
  1583. if udp_socket.accepts(self, &IpRepr::Ipv6(ipv6_repr), &udp_repr) {
  1584. udp_socket.process(
  1585. self,
  1586. &IpRepr::Ipv6(ipv6_repr),
  1587. &udp_repr,
  1588. udp_packet.payload(),
  1589. );
  1590. return None;
  1591. }
  1592. }
  1593. // When we are here then then there was no UDP socket that accepted the UDP
  1594. // message.
  1595. let payload_len = icmp_reply_payload_len(
  1596. payload.len(),
  1597. IPV6_MIN_MTU,
  1598. ipv6_repr.buffer_len(),
  1599. );
  1600. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  1601. reason: Icmpv6DstUnreachable::PortUnreachable,
  1602. header: ipv6_repr,
  1603. data: &payload[0..payload_len],
  1604. };
  1605. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  1606. }
  1607. }
  1608. }
  1609. SixlowpanNextHeader::Uncompressed(nxt_hdr) => match nxt_hdr {
  1610. IpProtocol::Icmpv6 => {
  1611. ipv6_repr.next_header = IpProtocol::Icmpv6;
  1612. self.process_icmpv6(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1613. }
  1614. #[cfg(feature = "socket-tcp")]
  1615. IpProtocol::Tcp => {
  1616. ipv6_repr.next_header = nxt_hdr;
  1617. ipv6_repr.payload_len += payload.len();
  1618. self.process_tcp(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1619. }
  1620. proto => {
  1621. net_debug!("6LoWPAN: {} currently not supported", proto);
  1622. None
  1623. }
  1624. },
  1625. }
  1626. }
  1627. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  1628. fn process_arp<'frame, T: AsRef<[u8]>>(
  1629. &mut self,
  1630. timestamp: Instant,
  1631. eth_frame: &EthernetFrame<&'frame T>,
  1632. ) -> Option<EthernetPacket<'frame>> {
  1633. let arp_packet = check!(ArpPacket::new_checked(eth_frame.payload()));
  1634. let arp_repr = check!(ArpRepr::parse(&arp_packet));
  1635. match arp_repr {
  1636. ArpRepr::EthernetIpv4 {
  1637. operation,
  1638. source_hardware_addr,
  1639. source_protocol_addr,
  1640. target_protocol_addr,
  1641. ..
  1642. } => {
  1643. // Only process ARP packets for us.
  1644. if !self.has_ip_addr(target_protocol_addr) {
  1645. return None;
  1646. }
  1647. // Only process REQUEST and RESPONSE.
  1648. if let ArpOperation::Unknown(_) = operation {
  1649. net_debug!("arp: unknown operation code");
  1650. return None;
  1651. }
  1652. // Discard packets with non-unicast source addresses.
  1653. if !source_protocol_addr.is_unicast() || !source_hardware_addr.is_unicast() {
  1654. net_debug!("arp: non-unicast source address");
  1655. return None;
  1656. }
  1657. if !self.in_same_network(&IpAddress::Ipv4(source_protocol_addr)) {
  1658. net_debug!("arp: source IP address not in same network as us");
  1659. return None;
  1660. }
  1661. // Fill the ARP cache from any ARP packet aimed at us (both request or response).
  1662. // We fill from requests too because if someone is requesting our address they
  1663. // are probably going to talk to us, so we avoid having to request their address
  1664. // when we later reply to them.
  1665. self.neighbor_cache.as_mut().unwrap().fill(
  1666. source_protocol_addr.into(),
  1667. source_hardware_addr.into(),
  1668. timestamp,
  1669. );
  1670. if operation == ArpOperation::Request {
  1671. let src_hardware_addr = match self.hardware_addr {
  1672. Some(HardwareAddress::Ethernet(addr)) => addr,
  1673. _ => unreachable!(),
  1674. };
  1675. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  1676. operation: ArpOperation::Reply,
  1677. source_hardware_addr: src_hardware_addr,
  1678. source_protocol_addr: target_protocol_addr,
  1679. target_hardware_addr: source_hardware_addr,
  1680. target_protocol_addr: source_protocol_addr,
  1681. }))
  1682. } else {
  1683. None
  1684. }
  1685. }
  1686. }
  1687. }
  1688. #[cfg(feature = "socket-raw")]
  1689. fn raw_socket_filter<'frame>(
  1690. &mut self,
  1691. sockets: &mut SocketSet,
  1692. ip_repr: &IpRepr,
  1693. ip_payload: &'frame [u8],
  1694. ) -> bool {
  1695. let mut handled_by_raw_socket = false;
  1696. // Pass every IP packet to all raw sockets we have registered.
  1697. for raw_socket in sockets
  1698. .items_mut()
  1699. .filter_map(|i| raw::Socket::downcast_mut(&mut i.socket))
  1700. {
  1701. if raw_socket.accepts(ip_repr) {
  1702. raw_socket.process(self, ip_repr, ip_payload);
  1703. handled_by_raw_socket = true;
  1704. }
  1705. }
  1706. handled_by_raw_socket
  1707. }
  1708. #[cfg(feature = "proto-ipv6")]
  1709. fn process_ipv6<'frame, T: AsRef<[u8]> + ?Sized>(
  1710. &mut self,
  1711. sockets: &mut SocketSet,
  1712. ipv6_packet: &Ipv6Packet<&'frame T>,
  1713. ) -> Option<IpPacket<'frame>> {
  1714. let ipv6_repr = check!(Ipv6Repr::parse(ipv6_packet));
  1715. if !ipv6_repr.src_addr.is_unicast() {
  1716. // Discard packets with non-unicast source addresses.
  1717. net_debug!("non-unicast source address");
  1718. return None;
  1719. }
  1720. let ip_payload = ipv6_packet.payload();
  1721. #[cfg(feature = "socket-raw")]
  1722. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ipv6_repr.into(), ip_payload);
  1723. #[cfg(not(feature = "socket-raw"))]
  1724. let handled_by_raw_socket = false;
  1725. self.process_nxt_hdr(
  1726. sockets,
  1727. ipv6_repr,
  1728. ipv6_repr.next_header,
  1729. handled_by_raw_socket,
  1730. ip_payload,
  1731. )
  1732. }
  1733. /// Given the next header value forward the payload onto the correct process
  1734. /// function.
  1735. #[cfg(feature = "proto-ipv6")]
  1736. fn process_nxt_hdr<'frame>(
  1737. &mut self,
  1738. sockets: &mut SocketSet,
  1739. ipv6_repr: Ipv6Repr,
  1740. nxt_hdr: IpProtocol,
  1741. handled_by_raw_socket: bool,
  1742. ip_payload: &'frame [u8],
  1743. ) -> Option<IpPacket<'frame>> {
  1744. match nxt_hdr {
  1745. IpProtocol::Icmpv6 => self.process_icmpv6(sockets, ipv6_repr.into(), ip_payload),
  1746. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1747. IpProtocol::Udp => {
  1748. self.process_udp(sockets, ipv6_repr.into(), handled_by_raw_socket, ip_payload)
  1749. }
  1750. #[cfg(feature = "socket-tcp")]
  1751. IpProtocol::Tcp => self.process_tcp(sockets, ipv6_repr.into(), ip_payload),
  1752. IpProtocol::HopByHop => {
  1753. self.process_hopbyhop(sockets, ipv6_repr, handled_by_raw_socket, ip_payload)
  1754. }
  1755. #[cfg(feature = "socket-raw")]
  1756. _ if handled_by_raw_socket => None,
  1757. _ => {
  1758. // Send back as much of the original payload as we can.
  1759. let payload_len =
  1760. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  1761. let icmp_reply_repr = Icmpv6Repr::ParamProblem {
  1762. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  1763. // The offending packet is after the IPv6 header.
  1764. pointer: ipv6_repr.buffer_len() as u32,
  1765. header: ipv6_repr,
  1766. data: &ip_payload[0..payload_len],
  1767. };
  1768. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  1769. }
  1770. }
  1771. }
  1772. #[cfg(feature = "proto-ipv4")]
  1773. fn process_ipv4<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1774. &mut self,
  1775. sockets: &mut SocketSet,
  1776. ipv4_packet: &Ipv4Packet<&'payload T>,
  1777. _fragments: Option<&'output mut PacketAssemblerSet<'a, Ipv4FragKey>>,
  1778. ) -> Option<IpPacket<'output>> {
  1779. let ipv4_repr = check!(Ipv4Repr::parse(ipv4_packet, &self.caps.checksum));
  1780. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  1781. // Discard packets with non-unicast source addresses.
  1782. net_debug!("non-unicast source address");
  1783. return None;
  1784. }
  1785. #[cfg(feature = "proto-ipv4-fragmentation")]
  1786. let ip_payload = {
  1787. const REASSEMBLY_TIMEOUT: u64 = 90;
  1788. let fragments = _fragments.unwrap();
  1789. if ipv4_packet.more_frags() || ipv4_packet.frag_offset() != 0 {
  1790. let key = ipv4_packet.get_key();
  1791. let f = match fragments.get_packet_assembler_mut(&key) {
  1792. Ok(f) => f,
  1793. Err(_) => {
  1794. check!(check!(fragments.reserve_with_key(&key)).start(
  1795. None,
  1796. self.now + Duration::from_secs(REASSEMBLY_TIMEOUT),
  1797. 0,
  1798. ));
  1799. check!(fragments.get_packet_assembler_mut(&key))
  1800. }
  1801. };
  1802. if !ipv4_packet.more_frags() {
  1803. // This is the last fragment, so we know the total size
  1804. check!(f.set_total_size(
  1805. ipv4_packet.total_len() as usize - ipv4_packet.header_len() as usize
  1806. + ipv4_packet.frag_offset() as usize,
  1807. ));
  1808. }
  1809. match f.add(ipv4_packet.payload(), ipv4_packet.frag_offset() as usize) {
  1810. Ok(true) => {
  1811. // NOTE: according to the standard, the total length needs to be
  1812. // recomputed, as well as the checksum. However, we don't really use
  1813. // the IPv4 header after the packet is reassembled.
  1814. check!(fragments.get_assembled_packet(&key))
  1815. }
  1816. Ok(false) => {
  1817. return None;
  1818. }
  1819. Err(Error::PacketAssemblerOverlap) => {
  1820. return None;
  1821. }
  1822. Err(e) => {
  1823. net_debug!("fragmentation error: {}", e);
  1824. return None;
  1825. }
  1826. }
  1827. } else {
  1828. ipv4_packet.payload()
  1829. }
  1830. };
  1831. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  1832. let ip_payload = ipv4_packet.payload();
  1833. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  1834. #[cfg(feature = "socket-raw")]
  1835. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);
  1836. #[cfg(not(feature = "socket-raw"))]
  1837. let handled_by_raw_socket = false;
  1838. #[cfg(feature = "socket-dhcpv4")]
  1839. {
  1840. if ipv4_repr.next_header == IpProtocol::Udp && self.hardware_addr.is_some() {
  1841. // First check for source and dest ports, then do `UdpRepr::parse` if they match.
  1842. // This way we avoid validating the UDP checksum twice for all non-DHCP UDP packets (one here, one in `process_udp`)
  1843. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  1844. if udp_packet.src_port() == DHCP_SERVER_PORT
  1845. && udp_packet.dst_port() == DHCP_CLIENT_PORT
  1846. {
  1847. if let Some(dhcp_socket) = sockets
  1848. .items_mut()
  1849. .find_map(|i| dhcpv4::Socket::downcast_mut(&mut i.socket))
  1850. {
  1851. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  1852. let udp_repr = check!(UdpRepr::parse(
  1853. &udp_packet,
  1854. &src_addr,
  1855. &dst_addr,
  1856. &self.caps.checksum
  1857. ));
  1858. let udp_payload = udp_packet.payload();
  1859. dhcp_socket.process(self, &ipv4_repr, &udp_repr, udp_payload);
  1860. return None;
  1861. }
  1862. }
  1863. }
  1864. }
  1865. if !self.has_ip_addr(ipv4_repr.dst_addr)
  1866. && !self.has_multicast_group(ipv4_repr.dst_addr)
  1867. && !self.is_broadcast_v4(ipv4_repr.dst_addr)
  1868. {
  1869. // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups.
  1870. // If AnyIP is enabled, also check if the packet is routed locally.
  1871. if !self.any_ip
  1872. || !ipv4_repr.dst_addr.is_unicast()
  1873. || self
  1874. .routes
  1875. .lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), self.now)
  1876. .map_or(true, |router_addr| !self.has_ip_addr(router_addr))
  1877. {
  1878. return None;
  1879. }
  1880. }
  1881. match ipv4_repr.next_header {
  1882. IpProtocol::Icmp => self.process_icmpv4(sockets, ip_repr, ip_payload),
  1883. #[cfg(feature = "proto-igmp")]
  1884. IpProtocol::Igmp => self.process_igmp(ipv4_repr, ip_payload),
  1885. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1886. IpProtocol::Udp => {
  1887. self.process_udp(sockets, ip_repr, handled_by_raw_socket, ip_payload)
  1888. }
  1889. #[cfg(feature = "socket-tcp")]
  1890. IpProtocol::Tcp => self.process_tcp(sockets, ip_repr, ip_payload),
  1891. _ if handled_by_raw_socket => None,
  1892. _ => {
  1893. // Send back as much of the original payload as we can.
  1894. let payload_len =
  1895. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  1896. let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
  1897. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  1898. header: ipv4_repr,
  1899. data: &ip_payload[0..payload_len],
  1900. };
  1901. self.icmpv4_reply(ipv4_repr, icmp_reply_repr)
  1902. }
  1903. }
  1904. }
  1905. /// Checks if an incoming packet has a broadcast address for the interfaces
  1906. /// associated ipv4 addresses.
  1907. #[cfg(feature = "proto-ipv4")]
  1908. fn is_subnet_broadcast(&self, address: Ipv4Address) -> bool {
  1909. self.ip_addrs
  1910. .iter()
  1911. .filter_map(|own_cidr| match own_cidr {
  1912. IpCidr::Ipv4(own_ip) => Some(own_ip.broadcast()?),
  1913. #[cfg(feature = "proto-ipv6")]
  1914. IpCidr::Ipv6(_) => None,
  1915. })
  1916. .any(|broadcast_address| address == broadcast_address)
  1917. }
  1918. /// Checks if an ipv4 address is broadcast, taking into account subnet broadcast addresses
  1919. #[cfg(feature = "proto-ipv4")]
  1920. fn is_broadcast_v4(&self, address: Ipv4Address) -> bool {
  1921. address.is_broadcast() || self.is_subnet_broadcast(address)
  1922. }
  1923. /// Checks if an ipv4 address is unicast, taking into account subnet broadcast addresses
  1924. #[cfg(feature = "proto-ipv4")]
  1925. fn is_unicast_v4(&self, address: Ipv4Address) -> bool {
  1926. address.is_unicast() && !self.is_subnet_broadcast(address)
  1927. }
  1928. /// Host duties of the **IGMPv2** protocol.
  1929. ///
  1930. /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries.
  1931. /// Membership must not be reported immediately in order to avoid flooding the network
  1932. /// after a query is broadcasted by a router; this is not currently done.
  1933. #[cfg(feature = "proto-igmp")]
  1934. fn process_igmp<'frame>(
  1935. &mut self,
  1936. ipv4_repr: Ipv4Repr,
  1937. ip_payload: &'frame [u8],
  1938. ) -> Option<IpPacket<'frame>> {
  1939. let igmp_packet = check!(IgmpPacket::new_checked(ip_payload));
  1940. let igmp_repr = check!(IgmpRepr::parse(&igmp_packet));
  1941. // FIXME: report membership after a delay
  1942. match igmp_repr {
  1943. IgmpRepr::MembershipQuery {
  1944. group_addr,
  1945. version,
  1946. max_resp_time,
  1947. } => {
  1948. // General query
  1949. if group_addr.is_unspecified()
  1950. && ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1951. {
  1952. // Are we member in any groups?
  1953. if self.ipv4_multicast_groups.iter().next().is_some() {
  1954. let interval = match version {
  1955. IgmpVersion::Version1 => Duration::from_millis(100),
  1956. IgmpVersion::Version2 => {
  1957. // No dependence on a random generator
  1958. // (see [#24](https://github.com/m-labs/smoltcp/issues/24))
  1959. // but at least spread reports evenly across max_resp_time.
  1960. let intervals = self.ipv4_multicast_groups.len() as u32 + 1;
  1961. max_resp_time / intervals
  1962. }
  1963. };
  1964. self.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1965. version,
  1966. timeout: self.now + interval,
  1967. interval,
  1968. next_index: 0,
  1969. };
  1970. }
  1971. } else {
  1972. // Group-specific query
  1973. if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr {
  1974. // Don't respond immediately
  1975. let timeout = max_resp_time / 4;
  1976. self.igmp_report_state = IgmpReportState::ToSpecificQuery {
  1977. version,
  1978. timeout: self.now + timeout,
  1979. group: group_addr,
  1980. };
  1981. }
  1982. }
  1983. }
  1984. // Ignore membership reports
  1985. IgmpRepr::MembershipReport { .. } => (),
  1986. // Ignore hosts leaving groups
  1987. IgmpRepr::LeaveGroup { .. } => (),
  1988. }
  1989. None
  1990. }
  1991. #[cfg(feature = "proto-ipv6")]
  1992. fn process_icmpv6<'frame>(
  1993. &mut self,
  1994. _sockets: &mut SocketSet,
  1995. ip_repr: IpRepr,
  1996. ip_payload: &'frame [u8],
  1997. ) -> Option<IpPacket<'frame>> {
  1998. let icmp_packet = check!(Icmpv6Packet::new_checked(ip_payload));
  1999. let icmp_repr = check!(Icmpv6Repr::parse(
  2000. &ip_repr.src_addr(),
  2001. &ip_repr.dst_addr(),
  2002. &icmp_packet,
  2003. &self.caps.checksum,
  2004. ));
  2005. #[cfg(feature = "socket-icmp")]
  2006. let mut handled_by_icmp_socket = false;
  2007. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))]
  2008. for icmp_socket in _sockets
  2009. .items_mut()
  2010. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2011. {
  2012. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2013. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2014. handled_by_icmp_socket = true;
  2015. }
  2016. }
  2017. match icmp_repr {
  2018. // Respond to echo requests.
  2019. Icmpv6Repr::EchoRequest {
  2020. ident,
  2021. seq_no,
  2022. data,
  2023. } => match ip_repr {
  2024. IpRepr::Ipv6(ipv6_repr) => {
  2025. let icmp_reply_repr = Icmpv6Repr::EchoReply {
  2026. ident,
  2027. seq_no,
  2028. data,
  2029. };
  2030. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  2031. }
  2032. #[allow(unreachable_patterns)]
  2033. _ => unreachable!(),
  2034. },
  2035. // Ignore any echo replies.
  2036. Icmpv6Repr::EchoReply { .. } => None,
  2037. // Forward any NDISC packets to the ndisc packet handler
  2038. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2039. Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr {
  2040. IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(ipv6_repr, repr),
  2041. #[allow(unreachable_patterns)]
  2042. _ => unreachable!(),
  2043. },
  2044. // Don't report an error if a packet with unknown type
  2045. // has been handled by an ICMP socket
  2046. #[cfg(feature = "socket-icmp")]
  2047. _ if handled_by_icmp_socket => None,
  2048. // FIXME: do something correct here?
  2049. _ => None,
  2050. }
  2051. }
  2052. #[cfg(all(
  2053. any(feature = "medium-ethernet", feature = "medium-ieee802154"),
  2054. feature = "proto-ipv6"
  2055. ))]
  2056. fn process_ndisc<'frame>(
  2057. &mut self,
  2058. ip_repr: Ipv6Repr,
  2059. repr: NdiscRepr<'frame>,
  2060. ) -> Option<IpPacket<'frame>> {
  2061. match repr {
  2062. NdiscRepr::NeighborAdvert {
  2063. lladdr,
  2064. target_addr,
  2065. flags,
  2066. } => {
  2067. let ip_addr = ip_repr.src_addr.into();
  2068. if let Some(lladdr) = lladdr {
  2069. let lladdr = check!(lladdr.parse(self.caps.medium));
  2070. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2071. return None;
  2072. }
  2073. if flags.contains(NdiscNeighborFlags::OVERRIDE)
  2074. || !self
  2075. .neighbor_cache
  2076. .as_mut()
  2077. .unwrap()
  2078. .lookup(&ip_addr, self.now)
  2079. .found()
  2080. {
  2081. self.neighbor_cache
  2082. .as_mut()
  2083. .unwrap()
  2084. .fill(ip_addr, lladdr, self.now)
  2085. }
  2086. }
  2087. None
  2088. }
  2089. NdiscRepr::NeighborSolicit {
  2090. target_addr,
  2091. lladdr,
  2092. ..
  2093. } => {
  2094. if let Some(lladdr) = lladdr {
  2095. let lladdr = check!(lladdr.parse(self.caps.medium));
  2096. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2097. return None;
  2098. }
  2099. self.neighbor_cache.as_mut().unwrap().fill(
  2100. ip_repr.src_addr.into(),
  2101. lladdr,
  2102. self.now,
  2103. );
  2104. }
  2105. if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) {
  2106. let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  2107. flags: NdiscNeighborFlags::SOLICITED,
  2108. target_addr,
  2109. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2110. lladdr: Some(self.hardware_addr.unwrap().into()),
  2111. });
  2112. let ip_repr = Ipv6Repr {
  2113. src_addr: target_addr,
  2114. dst_addr: ip_repr.src_addr,
  2115. next_header: IpProtocol::Icmpv6,
  2116. hop_limit: 0xff,
  2117. payload_len: advert.buffer_len(),
  2118. };
  2119. Some(IpPacket::Icmpv6((ip_repr, advert)))
  2120. } else {
  2121. None
  2122. }
  2123. }
  2124. _ => None,
  2125. }
  2126. }
  2127. #[cfg(feature = "proto-ipv6")]
  2128. fn process_hopbyhop<'frame>(
  2129. &mut self,
  2130. sockets: &mut SocketSet,
  2131. ipv6_repr: Ipv6Repr,
  2132. handled_by_raw_socket: bool,
  2133. ip_payload: &'frame [u8],
  2134. ) -> Option<IpPacket<'frame>> {
  2135. let hbh_pkt = check!(Ipv6HopByHopHeader::new_checked(ip_payload));
  2136. let hbh_repr = check!(Ipv6HopByHopRepr::parse(&hbh_pkt));
  2137. for opt_repr in hbh_repr.options() {
  2138. let opt_repr = check!(opt_repr);
  2139. match opt_repr {
  2140. Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (),
  2141. Ipv6OptionRepr::Unknown { type_, .. } => {
  2142. match Ipv6OptionFailureType::from(type_) {
  2143. Ipv6OptionFailureType::Skip => (),
  2144. Ipv6OptionFailureType::Discard => {
  2145. return None;
  2146. }
  2147. _ => {
  2148. // FIXME(dlrobertson): Send an ICMPv6 parameter problem message
  2149. // here.
  2150. return None;
  2151. }
  2152. }
  2153. }
  2154. }
  2155. }
  2156. self.process_nxt_hdr(
  2157. sockets,
  2158. ipv6_repr,
  2159. hbh_repr.next_header,
  2160. handled_by_raw_socket,
  2161. &ip_payload[hbh_repr.buffer_len()..],
  2162. )
  2163. }
  2164. #[cfg(feature = "proto-ipv4")]
  2165. fn process_icmpv4<'frame>(
  2166. &mut self,
  2167. _sockets: &mut SocketSet,
  2168. ip_repr: IpRepr,
  2169. ip_payload: &'frame [u8],
  2170. ) -> Option<IpPacket<'frame>> {
  2171. let icmp_packet = check!(Icmpv4Packet::new_checked(ip_payload));
  2172. let icmp_repr = check!(Icmpv4Repr::parse(&icmp_packet, &self.caps.checksum));
  2173. #[cfg(feature = "socket-icmp")]
  2174. let mut handled_by_icmp_socket = false;
  2175. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  2176. for icmp_socket in _sockets
  2177. .items_mut()
  2178. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2179. {
  2180. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2181. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2182. handled_by_icmp_socket = true;
  2183. }
  2184. }
  2185. match icmp_repr {
  2186. // Respond to echo requests.
  2187. #[cfg(feature = "proto-ipv4")]
  2188. Icmpv4Repr::EchoRequest {
  2189. ident,
  2190. seq_no,
  2191. data,
  2192. } => {
  2193. let icmp_reply_repr = Icmpv4Repr::EchoReply {
  2194. ident,
  2195. seq_no,
  2196. data,
  2197. };
  2198. match ip_repr {
  2199. IpRepr::Ipv4(ipv4_repr) => self.icmpv4_reply(ipv4_repr, icmp_reply_repr),
  2200. #[allow(unreachable_patterns)]
  2201. _ => unreachable!(),
  2202. }
  2203. }
  2204. // Ignore any echo replies.
  2205. Icmpv4Repr::EchoReply { .. } => None,
  2206. // Don't report an error if a packet with unknown type
  2207. // has been handled by an ICMP socket
  2208. #[cfg(feature = "socket-icmp")]
  2209. _ if handled_by_icmp_socket => None,
  2210. // FIXME: do something correct here?
  2211. _ => None,
  2212. }
  2213. }
  2214. #[cfg(feature = "proto-ipv4")]
  2215. fn icmpv4_reply<'frame, 'icmp: 'frame>(
  2216. &self,
  2217. ipv4_repr: Ipv4Repr,
  2218. icmp_repr: Icmpv4Repr<'icmp>,
  2219. ) -> Option<IpPacket<'frame>> {
  2220. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  2221. // Do not send ICMP replies to non-unicast sources
  2222. None
  2223. } else if self.is_unicast_v4(ipv4_repr.dst_addr) {
  2224. // Reply as normal when src_addr and dst_addr are both unicast
  2225. let ipv4_reply_repr = Ipv4Repr {
  2226. src_addr: ipv4_repr.dst_addr,
  2227. dst_addr: ipv4_repr.src_addr,
  2228. next_header: IpProtocol::Icmp,
  2229. payload_len: icmp_repr.buffer_len(),
  2230. hop_limit: 64,
  2231. };
  2232. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2233. } else if self.is_broadcast_v4(ipv4_repr.dst_addr) {
  2234. // Only reply to broadcasts for echo replies and not other ICMP messages
  2235. match icmp_repr {
  2236. Icmpv4Repr::EchoReply { .. } => match self.ipv4_address() {
  2237. Some(src_addr) => {
  2238. let ipv4_reply_repr = Ipv4Repr {
  2239. src_addr,
  2240. dst_addr: ipv4_repr.src_addr,
  2241. next_header: IpProtocol::Icmp,
  2242. payload_len: icmp_repr.buffer_len(),
  2243. hop_limit: 64,
  2244. };
  2245. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2246. }
  2247. None => None,
  2248. },
  2249. _ => None,
  2250. }
  2251. } else {
  2252. None
  2253. }
  2254. }
  2255. #[cfg(feature = "proto-ipv6")]
  2256. fn icmpv6_reply<'frame, 'icmp: 'frame>(
  2257. &self,
  2258. ipv6_repr: Ipv6Repr,
  2259. icmp_repr: Icmpv6Repr<'icmp>,
  2260. ) -> Option<IpPacket<'frame>> {
  2261. if ipv6_repr.dst_addr.is_unicast() {
  2262. let ipv6_reply_repr = Ipv6Repr {
  2263. src_addr: ipv6_repr.dst_addr,
  2264. dst_addr: ipv6_repr.src_addr,
  2265. next_header: IpProtocol::Icmpv6,
  2266. payload_len: icmp_repr.buffer_len(),
  2267. hop_limit: 64,
  2268. };
  2269. Some(IpPacket::Icmpv6((ipv6_reply_repr, icmp_repr)))
  2270. } else {
  2271. // Do not send any ICMP replies to a broadcast destination address.
  2272. None
  2273. }
  2274. }
  2275. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  2276. fn process_udp<'frame>(
  2277. &mut self,
  2278. sockets: &mut SocketSet,
  2279. ip_repr: IpRepr,
  2280. handled_by_raw_socket: bool,
  2281. ip_payload: &'frame [u8],
  2282. ) -> Option<IpPacket<'frame>> {
  2283. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2284. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  2285. let udp_repr = check!(UdpRepr::parse(
  2286. &udp_packet,
  2287. &src_addr,
  2288. &dst_addr,
  2289. &self.caps.checksum
  2290. ));
  2291. let udp_payload = udp_packet.payload();
  2292. #[cfg(feature = "socket-udp")]
  2293. for udp_socket in sockets
  2294. .items_mut()
  2295. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  2296. {
  2297. if udp_socket.accepts(self, &ip_repr, &udp_repr) {
  2298. udp_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2299. return None;
  2300. }
  2301. }
  2302. #[cfg(feature = "socket-dns")]
  2303. for dns_socket in sockets
  2304. .items_mut()
  2305. .filter_map(|i| dns::Socket::downcast_mut(&mut i.socket))
  2306. {
  2307. if dns_socket.accepts(&ip_repr, &udp_repr) {
  2308. dns_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2309. return None;
  2310. }
  2311. }
  2312. // The packet wasn't handled by a socket, send an ICMP port unreachable packet.
  2313. match ip_repr {
  2314. #[cfg(feature = "proto-ipv4")]
  2315. IpRepr::Ipv4(_) if handled_by_raw_socket => None,
  2316. #[cfg(feature = "proto-ipv6")]
  2317. IpRepr::Ipv6(_) if handled_by_raw_socket => None,
  2318. #[cfg(feature = "proto-ipv4")]
  2319. IpRepr::Ipv4(ipv4_repr) => {
  2320. let payload_len =
  2321. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  2322. let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable {
  2323. reason: Icmpv4DstUnreachable::PortUnreachable,
  2324. header: ipv4_repr,
  2325. data: &ip_payload[0..payload_len],
  2326. };
  2327. self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr)
  2328. }
  2329. #[cfg(feature = "proto-ipv6")]
  2330. IpRepr::Ipv6(ipv6_repr) => {
  2331. let payload_len =
  2332. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  2333. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  2334. reason: Icmpv6DstUnreachable::PortUnreachable,
  2335. header: ipv6_repr,
  2336. data: &ip_payload[0..payload_len],
  2337. };
  2338. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  2339. }
  2340. }
  2341. }
  2342. #[cfg(feature = "socket-tcp")]
  2343. fn process_tcp<'frame>(
  2344. &mut self,
  2345. sockets: &mut SocketSet,
  2346. ip_repr: IpRepr,
  2347. ip_payload: &'frame [u8],
  2348. ) -> Option<IpPacket<'frame>> {
  2349. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2350. let tcp_packet = check!(TcpPacket::new_checked(ip_payload));
  2351. let tcp_repr = check!(TcpRepr::parse(
  2352. &tcp_packet,
  2353. &src_addr,
  2354. &dst_addr,
  2355. &self.caps.checksum
  2356. ));
  2357. for tcp_socket in sockets
  2358. .items_mut()
  2359. .filter_map(|i| tcp::Socket::downcast_mut(&mut i.socket))
  2360. {
  2361. if tcp_socket.accepts(self, &ip_repr, &tcp_repr) {
  2362. return tcp_socket
  2363. .process(self, &ip_repr, &tcp_repr)
  2364. .map(IpPacket::Tcp);
  2365. }
  2366. }
  2367. if tcp_repr.control == TcpControl::Rst {
  2368. // Never reply to a TCP RST packet with another TCP RST packet.
  2369. None
  2370. } else {
  2371. // The packet wasn't handled by a socket, send a TCP RST packet.
  2372. Some(IpPacket::Tcp(tcp::Socket::rst_reply(&ip_repr, &tcp_repr)))
  2373. }
  2374. }
  2375. #[cfg(feature = "medium-ethernet")]
  2376. fn dispatch<Tx>(&mut self, tx_token: Tx, packet: EthernetPacket) -> Result<()>
  2377. where
  2378. Tx: TxToken,
  2379. {
  2380. match packet {
  2381. #[cfg(feature = "proto-ipv4")]
  2382. EthernetPacket::Arp(arp_repr) => {
  2383. let dst_hardware_addr = match arp_repr {
  2384. ArpRepr::EthernetIpv4 {
  2385. target_hardware_addr,
  2386. ..
  2387. } => target_hardware_addr,
  2388. };
  2389. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2390. frame.set_dst_addr(dst_hardware_addr);
  2391. frame.set_ethertype(EthernetProtocol::Arp);
  2392. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  2393. arp_repr.emit(&mut packet);
  2394. })
  2395. }
  2396. EthernetPacket::Ip(packet) => self.dispatch_ip(tx_token, packet, None),
  2397. }
  2398. }
  2399. #[cfg(feature = "medium-ethernet")]
  2400. fn dispatch_ethernet<Tx, F>(&mut self, tx_token: Tx, buffer_len: usize, f: F) -> Result<()>
  2401. where
  2402. Tx: TxToken,
  2403. F: FnOnce(EthernetFrame<&mut [u8]>),
  2404. {
  2405. let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len);
  2406. tx_token.consume(self.now, tx_len, |tx_buffer| {
  2407. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2408. let mut frame = EthernetFrame::new_unchecked(tx_buffer);
  2409. let src_addr = if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2410. addr
  2411. } else {
  2412. return Err(Error::Malformed);
  2413. };
  2414. frame.set_src_addr(src_addr);
  2415. f(frame);
  2416. Ok(())
  2417. })
  2418. }
  2419. fn in_same_network(&self, addr: &IpAddress) -> bool {
  2420. self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr))
  2421. }
  2422. fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result<IpAddress> {
  2423. // Send directly.
  2424. if self.in_same_network(addr) || addr.is_broadcast() {
  2425. return Ok(*addr);
  2426. }
  2427. // Route via a router.
  2428. match self.routes.lookup(addr, timestamp) {
  2429. Some(router_addr) => Ok(router_addr),
  2430. None => Err(Error::Unaddressable),
  2431. }
  2432. }
  2433. fn has_neighbor(&self, addr: &IpAddress) -> bool {
  2434. match self.route(addr, self.now) {
  2435. Ok(_routed_addr) => match self.caps.medium {
  2436. #[cfg(feature = "medium-ethernet")]
  2437. Medium::Ethernet => self
  2438. .neighbor_cache
  2439. .as_ref()
  2440. .unwrap()
  2441. .lookup(&_routed_addr, self.now)
  2442. .found(),
  2443. #[cfg(feature = "medium-ieee802154")]
  2444. Medium::Ieee802154 => self
  2445. .neighbor_cache
  2446. .as_ref()
  2447. .unwrap()
  2448. .lookup(&_routed_addr, self.now)
  2449. .found(),
  2450. #[cfg(feature = "medium-ip")]
  2451. Medium::Ip => true,
  2452. },
  2453. Err(_) => false,
  2454. }
  2455. }
  2456. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2457. fn lookup_hardware_addr<Tx>(
  2458. &mut self,
  2459. tx_token: Tx,
  2460. src_addr: &IpAddress,
  2461. dst_addr: &IpAddress,
  2462. ) -> Result<(HardwareAddress, Tx)>
  2463. where
  2464. Tx: TxToken,
  2465. {
  2466. if dst_addr.is_broadcast() {
  2467. let hardware_addr = match self.caps.medium {
  2468. #[cfg(feature = "medium-ethernet")]
  2469. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST),
  2470. #[cfg(feature = "medium-ieee802154")]
  2471. Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST),
  2472. #[cfg(feature = "medium-ip")]
  2473. Medium::Ip => unreachable!(),
  2474. };
  2475. return Ok((hardware_addr, tx_token));
  2476. }
  2477. if dst_addr.is_multicast() {
  2478. let b = dst_addr.as_bytes();
  2479. let hardware_addr = match *dst_addr {
  2480. #[cfg(feature = "proto-ipv4")]
  2481. IpAddress::Ipv4(_addr) => {
  2482. HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2483. 0x01,
  2484. 0x00,
  2485. 0x5e,
  2486. b[1] & 0x7F,
  2487. b[2],
  2488. b[3],
  2489. ]))
  2490. }
  2491. #[cfg(feature = "proto-ipv6")]
  2492. IpAddress::Ipv6(_addr) => match self.caps.medium {
  2493. #[cfg(feature = "medium-ethernet")]
  2494. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2495. 0x33, 0x33, b[12], b[13], b[14], b[15],
  2496. ])),
  2497. #[cfg(feature = "medium-ieee802154")]
  2498. Medium::Ieee802154 => {
  2499. // Not sure if this is correct
  2500. HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST)
  2501. }
  2502. #[cfg(feature = "medium-ip")]
  2503. Medium::Ip => unreachable!(),
  2504. },
  2505. };
  2506. return Ok((hardware_addr, tx_token));
  2507. }
  2508. let dst_addr = self.route(dst_addr, self.now)?;
  2509. match self
  2510. .neighbor_cache
  2511. .as_mut()
  2512. .unwrap()
  2513. .lookup(&dst_addr, self.now)
  2514. {
  2515. NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)),
  2516. NeighborAnswer::RateLimited => return Err(Error::Unaddressable),
  2517. _ => (), // XXX
  2518. }
  2519. match (src_addr, dst_addr) {
  2520. #[cfg(feature = "proto-ipv4")]
  2521. (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => {
  2522. net_debug!(
  2523. "address {} not in neighbor cache, sending ARP request",
  2524. dst_addr
  2525. );
  2526. let src_hardware_addr =
  2527. if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2528. addr
  2529. } else {
  2530. return Err(Error::Malformed);
  2531. };
  2532. let arp_repr = ArpRepr::EthernetIpv4 {
  2533. operation: ArpOperation::Request,
  2534. source_hardware_addr: src_hardware_addr,
  2535. source_protocol_addr: src_addr,
  2536. target_hardware_addr: EthernetAddress::BROADCAST,
  2537. target_protocol_addr: dst_addr,
  2538. };
  2539. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2540. frame.set_dst_addr(EthernetAddress::BROADCAST);
  2541. frame.set_ethertype(EthernetProtocol::Arp);
  2542. arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
  2543. })?;
  2544. }
  2545. #[cfg(feature = "proto-ipv6")]
  2546. (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
  2547. net_debug!(
  2548. "address {} not in neighbor cache, sending Neighbor Solicitation",
  2549. dst_addr
  2550. );
  2551. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  2552. target_addr: dst_addr,
  2553. lladdr: Some(self.hardware_addr.unwrap().into()),
  2554. });
  2555. let packet = IpPacket::Icmpv6((
  2556. Ipv6Repr {
  2557. src_addr,
  2558. dst_addr: dst_addr.solicited_node(),
  2559. next_header: IpProtocol::Icmpv6,
  2560. payload_len: solicit.buffer_len(),
  2561. hop_limit: 0xff,
  2562. },
  2563. solicit,
  2564. ));
  2565. self.dispatch_ip(tx_token, packet, None)?;
  2566. }
  2567. #[allow(unreachable_patterns)]
  2568. _ => (),
  2569. }
  2570. // The request got dispatched, limit the rate on the cache.
  2571. self.neighbor_cache.as_mut().unwrap().limit_rate(self.now);
  2572. Err(Error::Unaddressable)
  2573. }
  2574. fn flush_cache(&mut self) {
  2575. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2576. if let Some(cache) = self.neighbor_cache.as_mut() {
  2577. cache.flush()
  2578. }
  2579. }
  2580. fn dispatch_ip<Tx: TxToken>(
  2581. &mut self,
  2582. tx_token: Tx,
  2583. packet: IpPacket,
  2584. _out_packet: Option<&mut OutPackets<'_>>,
  2585. ) -> Result<()> {
  2586. let ip_repr = packet.ip_repr();
  2587. assert!(!ip_repr.dst_addr().is_unspecified());
  2588. match self.caps.medium {
  2589. #[cfg(feature = "medium-ethernet")]
  2590. Medium::Ethernet => {
  2591. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2592. tx_token,
  2593. &ip_repr.src_addr(),
  2594. &ip_repr.dst_addr(),
  2595. )? {
  2596. (HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token),
  2597. #[cfg(feature = "medium-ieee802154")]
  2598. (HardwareAddress::Ieee802154(_), _) => unreachable!(),
  2599. };
  2600. let caps = self.caps.clone();
  2601. self.dispatch_ethernet(tx_token, ip_repr.total_len(), |mut frame| {
  2602. frame.set_dst_addr(dst_hardware_addr);
  2603. match ip_repr {
  2604. #[cfg(feature = "proto-ipv4")]
  2605. IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4),
  2606. #[cfg(feature = "proto-ipv6")]
  2607. IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6),
  2608. }
  2609. ip_repr.emit(frame.payload_mut(), &caps.checksum);
  2610. let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..];
  2611. packet.emit_payload(ip_repr, payload, &caps);
  2612. })
  2613. }
  2614. #[cfg(feature = "medium-ip")]
  2615. Medium::Ip => {
  2616. let tx_len = ip_repr.total_len();
  2617. tx_token.consume(self.now, tx_len, |mut tx_buffer| {
  2618. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2619. ip_repr.emit(&mut tx_buffer, &self.caps.checksum);
  2620. let payload = &mut tx_buffer[ip_repr.buffer_len()..];
  2621. packet.emit_payload(ip_repr, payload, &self.caps);
  2622. Ok(())
  2623. })
  2624. }
  2625. #[cfg(feature = "medium-ieee802154")]
  2626. Medium::Ieee802154 => {
  2627. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2628. tx_token,
  2629. &ip_repr.src_addr(),
  2630. &ip_repr.dst_addr(),
  2631. )? {
  2632. (HardwareAddress::Ieee802154(addr), tx_token) => (addr, tx_token),
  2633. _ => unreachable!(),
  2634. };
  2635. self.dispatch_ieee802154(dst_hardware_addr, &ip_repr, tx_token, packet, _out_packet)
  2636. }
  2637. }
  2638. }
  2639. #[cfg(all(feature = "medium-ieee802154", feature = "proto-sixlowpan"))]
  2640. fn dispatch_ieee802154<Tx: TxToken>(
  2641. &mut self,
  2642. ll_dst_a: Ieee802154Address,
  2643. ip_repr: &IpRepr,
  2644. tx_token: Tx,
  2645. packet: IpPacket,
  2646. _out_packet: Option<&mut OutPackets>,
  2647. ) -> Result<()> {
  2648. // We first need to convert the IPv6 packet to a 6LoWPAN compressed packet.
  2649. // Whenever this packet is to big to fit in the IEEE802.15.4 packet, then we need to
  2650. // fragment it.
  2651. let ll_src_a = self.hardware_addr.map_or_else(
  2652. || Err(Error::Malformed),
  2653. |addr| match addr {
  2654. HardwareAddress::Ieee802154(addr) => Ok(addr),
  2655. _ => Err(Error::Malformed),
  2656. },
  2657. )?;
  2658. let (src_addr, dst_addr) = match (ip_repr.src_addr(), ip_repr.dst_addr()) {
  2659. (IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => (src_addr, dst_addr),
  2660. #[allow(unreachable_patterns)]
  2661. _ => return Err(Error::Unaddressable),
  2662. };
  2663. // Create the IEEE802.15.4 header.
  2664. let ieee_repr = Ieee802154Repr {
  2665. frame_type: Ieee802154FrameType::Data,
  2666. security_enabled: false,
  2667. frame_pending: false,
  2668. ack_request: false,
  2669. sequence_number: Some(self.get_sequence_number()),
  2670. pan_id_compression: true,
  2671. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2672. dst_pan_id: self.pan_id,
  2673. dst_addr: Some(ll_dst_a),
  2674. src_pan_id: self.pan_id,
  2675. src_addr: Some(ll_src_a),
  2676. };
  2677. // Create the 6LoWPAN IPHC header.
  2678. let iphc_repr = SixlowpanIphcRepr {
  2679. src_addr,
  2680. ll_src_addr: Some(ll_src_a),
  2681. dst_addr,
  2682. ll_dst_addr: Some(ll_dst_a),
  2683. next_header: match &packet {
  2684. IpPacket::Icmpv6(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Icmpv6),
  2685. #[cfg(feature = "socket-tcp")]
  2686. IpPacket::Tcp(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Tcp),
  2687. #[cfg(feature = "socket-udp")]
  2688. IpPacket::Udp(_) => SixlowpanNextHeader::Compressed,
  2689. #[allow(unreachable_patterns)]
  2690. _ => return Err(Error::Unrecognized),
  2691. },
  2692. hop_limit: ip_repr.hop_limit(),
  2693. ecn: None,
  2694. dscp: None,
  2695. flow_label: None,
  2696. };
  2697. // Now we calculate the total size of the packet.
  2698. // We need to know this, such that we know when to do the fragmentation.
  2699. let mut total_size = 0;
  2700. total_size += iphc_repr.buffer_len();
  2701. let mut _compressed_headers_len = iphc_repr.buffer_len();
  2702. #[allow(unreachable_patterns)]
  2703. match packet {
  2704. #[cfg(feature = "socket-udp")]
  2705. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2706. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2707. _compressed_headers_len += udp_repr.header_len();
  2708. total_size += udp_repr.header_len() + payload.len();
  2709. }
  2710. #[cfg(feature = "socket-tcp")]
  2711. IpPacket::Tcp((_, tcp_repr)) => {
  2712. total_size += tcp_repr.buffer_len();
  2713. }
  2714. #[cfg(feature = "proto-ipv6")]
  2715. IpPacket::Icmpv6((_, icmp_repr)) => {
  2716. total_size += icmp_repr.buffer_len();
  2717. }
  2718. _ => return Err(Error::Unrecognized),
  2719. }
  2720. let ieee_len = ieee_repr.buffer_len();
  2721. if total_size + ieee_len > 125 {
  2722. cfg_if::cfg_if! {
  2723. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  2724. // The packet does not fit in one Ieee802154 frame, so we need fragmentation.
  2725. // We do this by emitting everything in the `out_packet.buffer` from the interface.
  2726. // After emitting everything into that buffer, we send the first fragment heere.
  2727. // When `poll` is called again, we check if out_packet was fully sent, otherwise we
  2728. // call `dispatch_ieee802154_out_packet`, which will transmit the other fragments.
  2729. // `dispatch_ieee802154_out_packet` requires some information about the total packet size,
  2730. // the link local source and destination address...
  2731. let SixlowpanOutPacket {
  2732. buffer,
  2733. packet_len,
  2734. datagram_size,
  2735. datagram_tag,
  2736. sent_bytes,
  2737. fragn_size,
  2738. ll_dst_addr,
  2739. ll_src_addr,
  2740. ..
  2741. } = &mut _out_packet.unwrap().sixlowpan_out_packet;
  2742. *ll_dst_addr = ll_dst_a;
  2743. *ll_src_addr = ll_src_a;
  2744. let mut iphc_packet =
  2745. SixlowpanIphcPacket::new_unchecked(&mut buffer[..iphc_repr.buffer_len()]);
  2746. iphc_repr.emit(&mut iphc_packet);
  2747. let b = &mut buffer[iphc_repr.buffer_len()..];
  2748. #[allow(unreachable_patterns)]
  2749. match packet {
  2750. #[cfg(feature = "socket-udp")]
  2751. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2752. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2753. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2754. &mut b[..udp_repr.header_len() + payload.len()],
  2755. );
  2756. udp_repr.emit(
  2757. &mut udp_packet,
  2758. &iphc_repr.src_addr,
  2759. &iphc_repr.dst_addr,
  2760. payload.len(),
  2761. |buf| buf.copy_from_slice(payload),
  2762. );
  2763. }
  2764. #[cfg(feature = "socket-tcp")]
  2765. IpPacket::Tcp((_, tcp_repr)) => {
  2766. let mut tcp_packet =
  2767. TcpPacket::new_unchecked(&mut b[..tcp_repr.buffer_len()]);
  2768. tcp_repr.emit(
  2769. &mut tcp_packet,
  2770. &iphc_repr.src_addr.into(),
  2771. &iphc_repr.dst_addr.into(),
  2772. &self.caps.checksum,
  2773. );
  2774. }
  2775. #[cfg(feature = "proto-ipv6")]
  2776. IpPacket::Icmpv6((_, icmp_repr)) => {
  2777. let mut icmp_packet =
  2778. Icmpv6Packet::new_unchecked(&mut b[..icmp_repr.buffer_len()]);
  2779. icmp_repr.emit(
  2780. &iphc_repr.src_addr.into(),
  2781. &iphc_repr.dst_addr.into(),
  2782. &mut icmp_packet,
  2783. &self.caps.checksum,
  2784. );
  2785. }
  2786. _ => return Err(Error::Unrecognized),
  2787. }
  2788. *packet_len = total_size;
  2789. // The datagram size that we need to set in the first fragment header is equal to the
  2790. // IPv6 payload length + 40.
  2791. *datagram_size = (packet.ip_repr().payload_len() + 40) as u16;
  2792. // We generate a random tag.
  2793. let tag = self.get_sixlowpan_fragment_tag();
  2794. // We save the tag for the other fragments that will be created when calling `poll`
  2795. // multiple times.
  2796. *datagram_tag = tag;
  2797. let frag1 = SixlowpanFragRepr::FirstFragment {
  2798. size: *datagram_size,
  2799. tag,
  2800. };
  2801. let fragn = SixlowpanFragRepr::Fragment {
  2802. size: *datagram_size,
  2803. tag,
  2804. offset: 0,
  2805. };
  2806. // We calculate how much data we can send in the first fragment and the other
  2807. // fragments. The eventual IPv6 sizes of these fragments need to be a multiple of eight
  2808. // (except for the last fragment) since the offset field in the fragment is an offset
  2809. // in multiples of 8 octets. This is explained in [RFC 4944 § 5.3].
  2810. //
  2811. // [RFC 4944 § 5.3]: https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
  2812. let frag1_size = ((125 - ieee_len - frag1.buffer_len() - _compressed_headers_len)
  2813. & 0xffff_fff8)
  2814. + _compressed_headers_len;
  2815. *fragn_size = (125 - ieee_len - fragn.buffer_len()) & 0xffff_fff8;
  2816. *sent_bytes = frag1_size;
  2817. tx_token.consume(
  2818. self.now,
  2819. ieee_len + frag1.buffer_len() + frag1_size,
  2820. |mut tx_buf| {
  2821. // Add the IEEE header.
  2822. let mut ieee_packet =
  2823. Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2824. ieee_repr.emit(&mut ieee_packet);
  2825. tx_buf = &mut tx_buf[ieee_len..];
  2826. // Add the first fragment header
  2827. let mut frag1_packet = SixlowpanFragPacket::new_unchecked(&mut tx_buf);
  2828. frag1.emit(&mut frag1_packet);
  2829. tx_buf = &mut tx_buf[frag1.buffer_len()..];
  2830. // Add the buffer part.
  2831. tx_buf[..frag1_size].copy_from_slice(&buffer[..frag1_size]);
  2832. Ok(())
  2833. },
  2834. )
  2835. } else {
  2836. net_debug!("Enable the `proto-sixlowpan-fragmentation` feature for fragmentation support.");
  2837. Ok(())
  2838. }
  2839. }
  2840. } else {
  2841. // We don't need fragmentation, so we emit everything to the TX token.
  2842. tx_token.consume(self.now, total_size + ieee_len, |mut tx_buf| {
  2843. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2844. ieee_repr.emit(&mut ieee_packet);
  2845. tx_buf = &mut tx_buf[ieee_len..];
  2846. let mut iphc_packet =
  2847. SixlowpanIphcPacket::new_unchecked(&mut tx_buf[..iphc_repr.buffer_len()]);
  2848. iphc_repr.emit(&mut iphc_packet);
  2849. tx_buf = &mut tx_buf[iphc_repr.buffer_len()..];
  2850. #[allow(unreachable_patterns)]
  2851. match packet {
  2852. #[cfg(feature = "socket-udp")]
  2853. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2854. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2855. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2856. &mut tx_buf[..udp_repr.header_len() + payload.len()],
  2857. );
  2858. udp_repr.emit(
  2859. &mut udp_packet,
  2860. &iphc_repr.src_addr,
  2861. &iphc_repr.dst_addr,
  2862. payload.len(),
  2863. |buf| buf.copy_from_slice(payload),
  2864. );
  2865. }
  2866. #[cfg(feature = "socket-tcp")]
  2867. IpPacket::Tcp((_, tcp_repr)) => {
  2868. let mut tcp_packet =
  2869. TcpPacket::new_unchecked(&mut tx_buf[..tcp_repr.buffer_len()]);
  2870. tcp_repr.emit(
  2871. &mut tcp_packet,
  2872. &iphc_repr.src_addr.into(),
  2873. &iphc_repr.dst_addr.into(),
  2874. &self.caps.checksum,
  2875. );
  2876. }
  2877. #[cfg(feature = "proto-ipv6")]
  2878. IpPacket::Icmpv6((_, icmp_repr)) => {
  2879. let mut icmp_packet =
  2880. Icmpv6Packet::new_unchecked(&mut tx_buf[..icmp_repr.buffer_len()]);
  2881. icmp_repr.emit(
  2882. &iphc_repr.src_addr.into(),
  2883. &iphc_repr.dst_addr.into(),
  2884. &mut icmp_packet,
  2885. &self.caps.checksum,
  2886. );
  2887. }
  2888. _ => return Err(Error::Unrecognized),
  2889. }
  2890. Ok(())
  2891. })
  2892. }
  2893. }
  2894. #[cfg(all(
  2895. feature = "medium-ieee802154",
  2896. feature = "proto-sixlowpan-fragmentation"
  2897. ))]
  2898. fn dispatch_ieee802154_out_packet<Tx: TxToken>(
  2899. &mut self,
  2900. tx_token: Tx,
  2901. out_packet: &mut SixlowpanOutPacket,
  2902. ) -> Result<()> {
  2903. let SixlowpanOutPacket {
  2904. buffer,
  2905. packet_len,
  2906. datagram_size,
  2907. datagram_tag,
  2908. sent_bytes,
  2909. fragn_size,
  2910. ll_dst_addr,
  2911. ll_src_addr,
  2912. ..
  2913. } = out_packet;
  2914. // Create the IEEE802.15.4 header.
  2915. let ieee_repr = Ieee802154Repr {
  2916. frame_type: Ieee802154FrameType::Data,
  2917. security_enabled: false,
  2918. frame_pending: false,
  2919. ack_request: false,
  2920. sequence_number: Some(self.get_sequence_number()),
  2921. pan_id_compression: true,
  2922. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2923. dst_pan_id: self.pan_id,
  2924. dst_addr: Some(*ll_dst_addr),
  2925. src_pan_id: self.pan_id,
  2926. src_addr: Some(*ll_src_addr),
  2927. };
  2928. // Create the FRAG_N header.
  2929. let mut fragn = SixlowpanFragRepr::Fragment {
  2930. size: *datagram_size,
  2931. tag: *datagram_tag,
  2932. offset: 0,
  2933. };
  2934. let ieee_len = ieee_repr.buffer_len();
  2935. let frag_size = (*packet_len - *sent_bytes).min(*fragn_size);
  2936. tx_token.consume(
  2937. self.now,
  2938. ieee_repr.buffer_len() + fragn.buffer_len() + frag_size,
  2939. |mut tx_buf| {
  2940. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2941. ieee_repr.emit(&mut ieee_packet);
  2942. tx_buf = &mut tx_buf[ieee_len..];
  2943. // Add the next fragment header
  2944. let datagram_offset = ((40 + *sent_bytes) / 8) as u8;
  2945. fragn.set_offset(datagram_offset);
  2946. let mut frag_packet =
  2947. SixlowpanFragPacket::new_unchecked(&mut tx_buf[..fragn.buffer_len()]);
  2948. fragn.emit(&mut frag_packet);
  2949. tx_buf = &mut tx_buf[fragn.buffer_len()..];
  2950. // Add the buffer part
  2951. tx_buf[..frag_size].copy_from_slice(&buffer[*sent_bytes..][..frag_size]);
  2952. *sent_bytes += frag_size;
  2953. Ok(())
  2954. },
  2955. )
  2956. }
  2957. #[cfg(feature = "proto-igmp")]
  2958. fn igmp_report_packet<'any>(
  2959. &self,
  2960. version: IgmpVersion,
  2961. group_addr: Ipv4Address,
  2962. ) -> Option<IpPacket<'any>> {
  2963. let iface_addr = self.ipv4_address()?;
  2964. let igmp_repr = IgmpRepr::MembershipReport {
  2965. group_addr,
  2966. version,
  2967. };
  2968. let pkt = IpPacket::Igmp((
  2969. Ipv4Repr {
  2970. src_addr: iface_addr,
  2971. // Send to the group being reported
  2972. dst_addr: group_addr,
  2973. next_header: IpProtocol::Igmp,
  2974. payload_len: igmp_repr.buffer_len(),
  2975. hop_limit: 1,
  2976. // TODO: add Router Alert IPv4 header option. See
  2977. // [#183](https://github.com/m-labs/smoltcp/issues/183).
  2978. },
  2979. igmp_repr,
  2980. ));
  2981. Some(pkt)
  2982. }
  2983. #[cfg(feature = "proto-igmp")]
  2984. fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<IpPacket<'any>> {
  2985. self.ipv4_address().map(|iface_addr| {
  2986. let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
  2987. IpPacket::Igmp((
  2988. Ipv4Repr {
  2989. src_addr: iface_addr,
  2990. dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS,
  2991. next_header: IpProtocol::Igmp,
  2992. payload_len: igmp_repr.buffer_len(),
  2993. hop_limit: 1,
  2994. },
  2995. igmp_repr,
  2996. ))
  2997. })
  2998. }
  2999. }
  3000. #[cfg(test)]
  3001. mod test {
  3002. use std::collections::BTreeMap;
  3003. #[cfg(feature = "proto-igmp")]
  3004. use std::vec::Vec;
  3005. use super::*;
  3006. use crate::iface::Interface;
  3007. #[cfg(feature = "medium-ethernet")]
  3008. use crate::iface::NeighborCache;
  3009. use crate::phy::{ChecksumCapabilities, Loopback};
  3010. #[cfg(feature = "proto-igmp")]
  3011. use crate::time::Instant;
  3012. use crate::{Error, Result};
  3013. #[allow(unused)]
  3014. fn fill_slice(s: &mut [u8], val: u8) {
  3015. for x in s.iter_mut() {
  3016. *x = val
  3017. }
  3018. }
  3019. fn create<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3020. #[cfg(feature = "medium-ethernet")]
  3021. return create_ethernet();
  3022. #[cfg(not(feature = "medium-ethernet"))]
  3023. return create_ip();
  3024. }
  3025. #[cfg(all(feature = "medium-ip"))]
  3026. #[allow(unused)]
  3027. fn create_ip<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3028. // Create a basic device
  3029. let mut device = Loopback::new(Medium::Ip);
  3030. let ip_addrs = [
  3031. #[cfg(feature = "proto-ipv4")]
  3032. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3033. #[cfg(feature = "proto-ipv6")]
  3034. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3035. #[cfg(feature = "proto-ipv6")]
  3036. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3037. ];
  3038. let iface_builder = InterfaceBuilder::new().ip_addrs(ip_addrs);
  3039. #[cfg(feature = "proto-ipv4-fragmentation")]
  3040. let iface_builder =
  3041. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3042. #[cfg(feature = "proto-igmp")]
  3043. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3044. let iface = iface_builder.finalize(&mut device);
  3045. (iface, SocketSet::new(vec![]), device)
  3046. }
  3047. #[cfg(all(feature = "medium-ethernet"))]
  3048. fn create_ethernet<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3049. // Create a basic device
  3050. let mut device = Loopback::new(Medium::Ethernet);
  3051. let ip_addrs = [
  3052. #[cfg(feature = "proto-ipv4")]
  3053. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3054. #[cfg(feature = "proto-ipv6")]
  3055. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3056. #[cfg(feature = "proto-ipv6")]
  3057. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3058. ];
  3059. let iface_builder = InterfaceBuilder::new()
  3060. .hardware_addr(EthernetAddress::default().into())
  3061. .neighbor_cache(NeighborCache::new(BTreeMap::new()))
  3062. .ip_addrs(ip_addrs);
  3063. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  3064. let iface_builder = iface_builder
  3065. .sixlowpan_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()))
  3066. .sixlowpan_out_packet_cache(vec![]);
  3067. #[cfg(feature = "proto-ipv4-fragmentation")]
  3068. let iface_builder =
  3069. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3070. #[cfg(feature = "proto-igmp")]
  3071. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3072. let iface = iface_builder.finalize(&mut device);
  3073. (iface, SocketSet::new(vec![]), device)
  3074. }
  3075. #[cfg(feature = "proto-igmp")]
  3076. fn recv_all(device: &mut Loopback, timestamp: Instant) -> Vec<Vec<u8>> {
  3077. let mut pkts = Vec::new();
  3078. while let Some((rx, _tx)) = device.receive() {
  3079. rx.consume(timestamp, |pkt| {
  3080. pkts.push(pkt.to_vec());
  3081. Ok(())
  3082. })
  3083. .unwrap();
  3084. }
  3085. pkts
  3086. }
  3087. #[derive(Debug, PartialEq)]
  3088. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  3089. struct MockTxToken;
  3090. impl TxToken for MockTxToken {
  3091. fn consume<R, F>(self, _: Instant, _: usize, _: F) -> Result<R>
  3092. where
  3093. F: FnOnce(&mut [u8]) -> Result<R>,
  3094. {
  3095. Err(Error::Unaddressable)
  3096. }
  3097. }
  3098. #[test]
  3099. #[should_panic(expected = "hardware_addr required option was not set")]
  3100. #[cfg(all(feature = "medium-ethernet"))]
  3101. fn test_builder_initialization_panic() {
  3102. let mut device = Loopback::new(Medium::Ethernet);
  3103. InterfaceBuilder::new().finalize(&mut device);
  3104. }
  3105. #[test]
  3106. #[cfg(feature = "proto-ipv4")]
  3107. fn test_no_icmp_no_unicast_ipv4() {
  3108. let (mut iface, mut sockets, _device) = create();
  3109. // Unknown Ipv4 Protocol
  3110. //
  3111. // Because the destination is the broadcast address
  3112. // this should not trigger and Destination Unreachable
  3113. // response. See RFC 1122 § 3.2.2.
  3114. let repr = IpRepr::Ipv4(Ipv4Repr {
  3115. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3116. dst_addr: Ipv4Address::BROADCAST,
  3117. next_header: IpProtocol::Unknown(0x0c),
  3118. payload_len: 0,
  3119. hop_limit: 0x40,
  3120. });
  3121. let mut bytes = vec![0u8; 54];
  3122. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3123. let frame = Ipv4Packet::new_unchecked(&bytes);
  3124. // Ensure that the unknown protocol frame does not trigger an
  3125. // ICMP error response when the destination address is a
  3126. // broadcast address
  3127. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3128. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  3129. #[cfg(feature = "proto-ipv4-fragmentation")]
  3130. assert_eq!(
  3131. iface.inner.process_ipv4(
  3132. &mut sockets,
  3133. &frame,
  3134. Some(&mut iface.fragments.ipv4_fragments)
  3135. ),
  3136. None
  3137. );
  3138. }
  3139. #[test]
  3140. #[cfg(feature = "proto-ipv6")]
  3141. fn test_no_icmp_no_unicast_ipv6() {
  3142. let (mut iface, mut sockets, _device) = create();
  3143. // Unknown Ipv6 Protocol
  3144. //
  3145. // Because the destination is the broadcast address
  3146. // this should not trigger and Destination Unreachable
  3147. // response. See RFC 1122 § 3.2.2.
  3148. let repr = IpRepr::Ipv6(Ipv6Repr {
  3149. src_addr: Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
  3150. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3151. next_header: IpProtocol::Unknown(0x0c),
  3152. payload_len: 0,
  3153. hop_limit: 0x40,
  3154. });
  3155. let mut bytes = vec![0u8; 54];
  3156. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3157. let frame = Ipv6Packet::new_unchecked(&bytes);
  3158. // Ensure that the unknown protocol frame does not trigger an
  3159. // ICMP error response when the destination address is a
  3160. // broadcast address
  3161. assert_eq!(iface.inner.process_ipv6(&mut sockets, &frame), None);
  3162. }
  3163. #[test]
  3164. #[cfg(feature = "proto-ipv4")]
  3165. fn test_icmp_error_no_payload() {
  3166. static NO_BYTES: [u8; 0] = [];
  3167. let (mut iface, mut sockets, _device) = create();
  3168. // Unknown Ipv4 Protocol with no payload
  3169. let repr = IpRepr::Ipv4(Ipv4Repr {
  3170. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3171. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3172. next_header: IpProtocol::Unknown(0x0c),
  3173. payload_len: 0,
  3174. hop_limit: 0x40,
  3175. });
  3176. let mut bytes = vec![0u8; 34];
  3177. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3178. let frame = Ipv4Packet::new_unchecked(&bytes);
  3179. // The expected Destination Unreachable response due to the
  3180. // unknown protocol
  3181. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3182. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  3183. header: Ipv4Repr {
  3184. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3185. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3186. next_header: IpProtocol::Unknown(12),
  3187. payload_len: 0,
  3188. hop_limit: 64,
  3189. },
  3190. data: &NO_BYTES,
  3191. };
  3192. let expected_repr = IpPacket::Icmpv4((
  3193. Ipv4Repr {
  3194. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3195. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3196. next_header: IpProtocol::Icmp,
  3197. payload_len: icmp_repr.buffer_len(),
  3198. hop_limit: 64,
  3199. },
  3200. icmp_repr,
  3201. ));
  3202. // Ensure that the unknown protocol triggers an error response.
  3203. // And we correctly handle no payload.
  3204. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3205. assert_eq!(
  3206. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3207. Some(expected_repr)
  3208. );
  3209. #[cfg(feature = "proto-ipv4-fragmentation")]
  3210. assert_eq!(
  3211. iface.inner.process_ipv4(
  3212. &mut sockets,
  3213. &frame,
  3214. Some(&mut iface.fragments.ipv4_fragments)
  3215. ),
  3216. Some(expected_repr)
  3217. );
  3218. }
  3219. #[test]
  3220. #[cfg(feature = "proto-ipv4")]
  3221. fn test_local_subnet_broadcasts() {
  3222. let (mut iface, _, _device) = create();
  3223. iface.update_ip_addrs(|addrs| {
  3224. addrs.iter_mut().next().map(|addr| {
  3225. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 1, 23]), 24));
  3226. });
  3227. });
  3228. assert!(iface
  3229. .inner
  3230. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 255])),);
  3231. assert!(!iface
  3232. .inner
  3233. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 254])),);
  3234. iface.update_ip_addrs(|addrs| {
  3235. addrs.iter_mut().next().map(|addr| {
  3236. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 16));
  3237. });
  3238. });
  3239. assert!(!iface
  3240. .inner
  3241. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 255])),);
  3242. assert!(!iface
  3243. .inner
  3244. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 254])),);
  3245. assert!(!iface
  3246. .inner
  3247. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 254])),);
  3248. assert!(iface
  3249. .inner
  3250. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 255])),);
  3251. iface.update_ip_addrs(|addrs| {
  3252. addrs.iter_mut().next().map(|addr| {
  3253. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 8));
  3254. });
  3255. });
  3256. assert!(!iface
  3257. .inner
  3258. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 255])),);
  3259. assert!(!iface
  3260. .inner
  3261. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 254])),);
  3262. assert!(!iface
  3263. .inner
  3264. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 254])),);
  3265. assert!(iface
  3266. .inner
  3267. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 255])),);
  3268. }
  3269. #[test]
  3270. #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))]
  3271. fn test_icmp_error_port_unreachable() {
  3272. static UDP_PAYLOAD: [u8; 12] = [
  3273. 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x6c, 0x64, 0x21,
  3274. ];
  3275. let (mut iface, mut sockets, _device) = create();
  3276. let mut udp_bytes_unicast = vec![0u8; 20];
  3277. let mut udp_bytes_broadcast = vec![0u8; 20];
  3278. let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast);
  3279. let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast);
  3280. let udp_repr = UdpRepr {
  3281. src_port: 67,
  3282. dst_port: 68,
  3283. };
  3284. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3285. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3286. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3287. next_header: IpProtocol::Udp,
  3288. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3289. hop_limit: 64,
  3290. });
  3291. // Emit the representations to a packet
  3292. udp_repr.emit(
  3293. &mut packet_unicast,
  3294. &ip_repr.src_addr(),
  3295. &ip_repr.dst_addr(),
  3296. UDP_PAYLOAD.len(),
  3297. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3298. &ChecksumCapabilities::default(),
  3299. );
  3300. let data = packet_unicast.into_inner();
  3301. // The expected Destination Unreachable ICMPv4 error response due
  3302. // to no sockets listening on the destination port.
  3303. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3304. reason: Icmpv4DstUnreachable::PortUnreachable,
  3305. header: Ipv4Repr {
  3306. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3307. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3308. next_header: IpProtocol::Udp,
  3309. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3310. hop_limit: 64,
  3311. },
  3312. data,
  3313. };
  3314. let expected_repr = IpPacket::Icmpv4((
  3315. Ipv4Repr {
  3316. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3317. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3318. next_header: IpProtocol::Icmp,
  3319. payload_len: icmp_repr.buffer_len(),
  3320. hop_limit: 64,
  3321. },
  3322. icmp_repr,
  3323. ));
  3324. // Ensure that the unknown protocol triggers an error response.
  3325. // And we correctly handle no payload.
  3326. assert_eq!(
  3327. iface.inner.process_udp(&mut sockets, ip_repr, false, data),
  3328. Some(expected_repr)
  3329. );
  3330. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3331. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3332. dst_addr: Ipv4Address::BROADCAST,
  3333. next_header: IpProtocol::Udp,
  3334. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3335. hop_limit: 64,
  3336. });
  3337. // Emit the representations to a packet
  3338. udp_repr.emit(
  3339. &mut packet_broadcast,
  3340. &ip_repr.src_addr(),
  3341. &IpAddress::Ipv4(Ipv4Address::BROADCAST),
  3342. UDP_PAYLOAD.len(),
  3343. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3344. &ChecksumCapabilities::default(),
  3345. );
  3346. // Ensure that the port unreachable error does not trigger an
  3347. // ICMP error response when the destination address is a
  3348. // broadcast address and no socket is bound to the port.
  3349. assert_eq!(
  3350. iface
  3351. .inner
  3352. .process_udp(&mut sockets, ip_repr, false, packet_broadcast.into_inner()),
  3353. None
  3354. );
  3355. }
  3356. #[test]
  3357. #[cfg(feature = "socket-udp")]
  3358. fn test_handle_udp_broadcast() {
  3359. use crate::wire::IpEndpoint;
  3360. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  3361. let (mut iface, mut sockets, _device) = create();
  3362. let rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3363. let tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3364. let udp_socket = udp::Socket::new(rx_buffer, tx_buffer);
  3365. let mut udp_bytes = vec![0u8; 13];
  3366. let mut packet = UdpPacket::new_unchecked(&mut udp_bytes);
  3367. let socket_handle = sockets.add(udp_socket);
  3368. #[cfg(feature = "proto-ipv6")]
  3369. let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3370. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3371. let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02);
  3372. let udp_repr = UdpRepr {
  3373. src_port: 67,
  3374. dst_port: 68,
  3375. };
  3376. #[cfg(feature = "proto-ipv6")]
  3377. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3378. src_addr: src_ip,
  3379. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3380. next_header: IpProtocol::Udp,
  3381. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3382. hop_limit: 0x40,
  3383. });
  3384. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3385. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3386. src_addr: src_ip,
  3387. dst_addr: Ipv4Address::BROADCAST,
  3388. next_header: IpProtocol::Udp,
  3389. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3390. hop_limit: 0x40,
  3391. });
  3392. // Bind the socket to port 68
  3393. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3394. assert_eq!(socket.bind(68), Ok(()));
  3395. assert!(!socket.can_recv());
  3396. assert!(socket.can_send());
  3397. udp_repr.emit(
  3398. &mut packet,
  3399. &ip_repr.src_addr(),
  3400. &ip_repr.dst_addr(),
  3401. UDP_PAYLOAD.len(),
  3402. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3403. &ChecksumCapabilities::default(),
  3404. );
  3405. // Packet should be handled by bound UDP socket
  3406. assert_eq!(
  3407. iface
  3408. .inner
  3409. .process_udp(&mut sockets, ip_repr, false, packet.into_inner()),
  3410. None
  3411. );
  3412. // Make sure the payload to the UDP packet processed by process_udp is
  3413. // appended to the bound sockets rx_buffer
  3414. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3415. assert!(socket.can_recv());
  3416. assert_eq!(
  3417. socket.recv(),
  3418. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67)))
  3419. );
  3420. }
  3421. #[test]
  3422. #[cfg(feature = "proto-ipv4")]
  3423. fn test_handle_ipv4_broadcast() {
  3424. use crate::wire::{Icmpv4Packet, Icmpv4Repr, Ipv4Packet};
  3425. let (mut iface, mut sockets, _device) = create();
  3426. let our_ipv4_addr = iface.ipv4_address().unwrap();
  3427. let src_ipv4_addr = Ipv4Address([127, 0, 0, 2]);
  3428. // ICMPv4 echo request
  3429. let icmpv4_data: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
  3430. let icmpv4_repr = Icmpv4Repr::EchoRequest {
  3431. ident: 0x1234,
  3432. seq_no: 0xabcd,
  3433. data: &icmpv4_data,
  3434. };
  3435. // Send to IPv4 broadcast address
  3436. let ipv4_repr = Ipv4Repr {
  3437. src_addr: src_ipv4_addr,
  3438. dst_addr: Ipv4Address::BROADCAST,
  3439. next_header: IpProtocol::Icmp,
  3440. hop_limit: 64,
  3441. payload_len: icmpv4_repr.buffer_len(),
  3442. };
  3443. // Emit to ip frame
  3444. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + icmpv4_repr.buffer_len()];
  3445. let frame = {
  3446. ipv4_repr.emit(
  3447. &mut Ipv4Packet::new_unchecked(&mut bytes),
  3448. &ChecksumCapabilities::default(),
  3449. );
  3450. icmpv4_repr.emit(
  3451. &mut Icmpv4Packet::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  3452. &ChecksumCapabilities::default(),
  3453. );
  3454. Ipv4Packet::new_unchecked(&bytes)
  3455. };
  3456. // Expected ICMPv4 echo reply
  3457. let expected_icmpv4_repr = Icmpv4Repr::EchoReply {
  3458. ident: 0x1234,
  3459. seq_no: 0xabcd,
  3460. data: &icmpv4_data,
  3461. };
  3462. let expected_ipv4_repr = Ipv4Repr {
  3463. src_addr: our_ipv4_addr,
  3464. dst_addr: src_ipv4_addr,
  3465. next_header: IpProtocol::Icmp,
  3466. hop_limit: 64,
  3467. payload_len: expected_icmpv4_repr.buffer_len(),
  3468. };
  3469. let expected_packet = IpPacket::Icmpv4((expected_ipv4_repr, expected_icmpv4_repr));
  3470. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3471. assert_eq!(
  3472. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3473. Some(expected_packet)
  3474. );
  3475. #[cfg(feature = "proto-ipv4-fragmentation")]
  3476. assert_eq!(
  3477. iface.inner.process_ipv4(
  3478. &mut sockets,
  3479. &frame,
  3480. Some(&mut iface.fragments.ipv4_fragments)
  3481. ),
  3482. Some(expected_packet)
  3483. );
  3484. }
  3485. #[test]
  3486. #[cfg(feature = "socket-udp")]
  3487. fn test_icmp_reply_size() {
  3488. #[cfg(feature = "proto-ipv6")]
  3489. use crate::wire::Icmpv6DstUnreachable;
  3490. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3491. use crate::wire::IPV4_MIN_MTU as MIN_MTU;
  3492. #[cfg(feature = "proto-ipv6")]
  3493. use crate::wire::IPV6_MIN_MTU as MIN_MTU;
  3494. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3495. const MAX_PAYLOAD_LEN: usize = 528;
  3496. #[cfg(feature = "proto-ipv6")]
  3497. const MAX_PAYLOAD_LEN: usize = 1192;
  3498. let (mut iface, mut sockets, _device) = create();
  3499. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3500. let src_addr = Ipv4Address([192, 168, 1, 1]);
  3501. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3502. let dst_addr = Ipv4Address([192, 168, 1, 2]);
  3503. #[cfg(feature = "proto-ipv6")]
  3504. let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3505. #[cfg(feature = "proto-ipv6")]
  3506. let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2);
  3507. // UDP packet that if not tructated will cause a icmp port unreachable reply
  3508. // to exeed the minimum mtu bytes in length.
  3509. let udp_repr = UdpRepr {
  3510. src_port: 67,
  3511. dst_port: 68,
  3512. };
  3513. let mut bytes = vec![0xff; udp_repr.header_len() + MAX_PAYLOAD_LEN];
  3514. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  3515. udp_repr.emit(
  3516. &mut packet,
  3517. &src_addr.into(),
  3518. &dst_addr.into(),
  3519. MAX_PAYLOAD_LEN,
  3520. |buf| fill_slice(buf, 0x2a),
  3521. &ChecksumCapabilities::default(),
  3522. );
  3523. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3524. let ip_repr = Ipv4Repr {
  3525. src_addr,
  3526. dst_addr,
  3527. next_header: IpProtocol::Udp,
  3528. hop_limit: 64,
  3529. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3530. };
  3531. #[cfg(feature = "proto-ipv6")]
  3532. let ip_repr = Ipv6Repr {
  3533. src_addr,
  3534. dst_addr,
  3535. next_header: IpProtocol::Udp,
  3536. hop_limit: 64,
  3537. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3538. };
  3539. let payload = packet.into_inner();
  3540. // Expected packets
  3541. #[cfg(feature = "proto-ipv6")]
  3542. let expected_icmp_repr = Icmpv6Repr::DstUnreachable {
  3543. reason: Icmpv6DstUnreachable::PortUnreachable,
  3544. header: ip_repr,
  3545. data: &payload[..MAX_PAYLOAD_LEN],
  3546. };
  3547. #[cfg(feature = "proto-ipv6")]
  3548. let expected_ip_repr = Ipv6Repr {
  3549. src_addr: dst_addr,
  3550. dst_addr: src_addr,
  3551. next_header: IpProtocol::Icmpv6,
  3552. hop_limit: 64,
  3553. payload_len: expected_icmp_repr.buffer_len(),
  3554. };
  3555. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3556. let expected_icmp_repr = Icmpv4Repr::DstUnreachable {
  3557. reason: Icmpv4DstUnreachable::PortUnreachable,
  3558. header: ip_repr,
  3559. data: &payload[..MAX_PAYLOAD_LEN],
  3560. };
  3561. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3562. let expected_ip_repr = Ipv4Repr {
  3563. src_addr: dst_addr,
  3564. dst_addr: src_addr,
  3565. next_header: IpProtocol::Icmp,
  3566. hop_limit: 64,
  3567. payload_len: expected_icmp_repr.buffer_len(),
  3568. };
  3569. // The expected packet does not exceed the IPV4_MIN_MTU
  3570. #[cfg(feature = "proto-ipv6")]
  3571. assert_eq!(
  3572. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3573. MIN_MTU
  3574. );
  3575. // The expected packet does not exceed the IPV4_MIN_MTU
  3576. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3577. assert_eq!(
  3578. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3579. MIN_MTU
  3580. );
  3581. // The expected packet and the generated packet are equal
  3582. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3583. assert_eq!(
  3584. iface
  3585. .inner
  3586. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3587. Some(IpPacket::Icmpv4((expected_ip_repr, expected_icmp_repr)))
  3588. );
  3589. #[cfg(feature = "proto-ipv6")]
  3590. assert_eq!(
  3591. iface
  3592. .inner
  3593. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3594. Some(IpPacket::Icmpv6((expected_ip_repr, expected_icmp_repr)))
  3595. );
  3596. }
  3597. #[test]
  3598. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3599. fn test_handle_valid_arp_request() {
  3600. let (mut iface, mut sockets, _device) = create_ethernet();
  3601. let mut eth_bytes = vec![0u8; 42];
  3602. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3603. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3604. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3605. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3606. let repr = ArpRepr::EthernetIpv4 {
  3607. operation: ArpOperation::Request,
  3608. source_hardware_addr: remote_hw_addr,
  3609. source_protocol_addr: remote_ip_addr,
  3610. target_hardware_addr: EthernetAddress::default(),
  3611. target_protocol_addr: local_ip_addr,
  3612. };
  3613. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3614. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3615. frame.set_src_addr(remote_hw_addr);
  3616. frame.set_ethertype(EthernetProtocol::Arp);
  3617. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3618. repr.emit(&mut packet);
  3619. // Ensure an ARP Request for us triggers an ARP Reply
  3620. assert_eq!(
  3621. iface
  3622. .inner
  3623. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3624. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3625. operation: ArpOperation::Reply,
  3626. source_hardware_addr: local_hw_addr,
  3627. source_protocol_addr: local_ip_addr,
  3628. target_hardware_addr: remote_hw_addr,
  3629. target_protocol_addr: remote_ip_addr
  3630. }))
  3631. );
  3632. // Ensure the address of the requestor was entered in the cache
  3633. assert_eq!(
  3634. iface.inner.lookup_hardware_addr(
  3635. MockTxToken,
  3636. &IpAddress::Ipv4(local_ip_addr),
  3637. &IpAddress::Ipv4(remote_ip_addr)
  3638. ),
  3639. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3640. );
  3641. }
  3642. #[test]
  3643. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv6"))]
  3644. fn test_handle_valid_ndisc_request() {
  3645. let (mut iface, mut sockets, _device) = create_ethernet();
  3646. let mut eth_bytes = vec![0u8; 86];
  3647. let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1);
  3648. let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2);
  3649. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3650. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3651. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  3652. target_addr: local_ip_addr,
  3653. lladdr: Some(remote_hw_addr.into()),
  3654. });
  3655. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3656. src_addr: remote_ip_addr,
  3657. dst_addr: local_ip_addr.solicited_node(),
  3658. next_header: IpProtocol::Icmpv6,
  3659. hop_limit: 0xff,
  3660. payload_len: solicit.buffer_len(),
  3661. });
  3662. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3663. frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00]));
  3664. frame.set_src_addr(remote_hw_addr);
  3665. frame.set_ethertype(EthernetProtocol::Ipv6);
  3666. ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  3667. solicit.emit(
  3668. &remote_ip_addr.into(),
  3669. &local_ip_addr.solicited_node().into(),
  3670. &mut Icmpv6Packet::new_unchecked(&mut frame.payload_mut()[ip_repr.buffer_len()..]),
  3671. &ChecksumCapabilities::default(),
  3672. );
  3673. let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  3674. flags: NdiscNeighborFlags::SOLICITED,
  3675. target_addr: local_ip_addr,
  3676. lladdr: Some(local_hw_addr.into()),
  3677. });
  3678. let ipv6_expected = Ipv6Repr {
  3679. src_addr: local_ip_addr,
  3680. dst_addr: remote_ip_addr,
  3681. next_header: IpProtocol::Icmpv6,
  3682. hop_limit: 0xff,
  3683. payload_len: icmpv6_expected.buffer_len(),
  3684. };
  3685. // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement
  3686. assert_eq!(
  3687. iface
  3688. .inner
  3689. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3690. Some(EthernetPacket::Ip(IpPacket::Icmpv6((
  3691. ipv6_expected,
  3692. icmpv6_expected
  3693. ))))
  3694. );
  3695. // Ensure the address of the requestor was entered in the cache
  3696. assert_eq!(
  3697. iface.inner.lookup_hardware_addr(
  3698. MockTxToken,
  3699. &IpAddress::Ipv6(local_ip_addr),
  3700. &IpAddress::Ipv6(remote_ip_addr)
  3701. ),
  3702. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3703. );
  3704. }
  3705. #[test]
  3706. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3707. fn test_handle_other_arp_request() {
  3708. let (mut iface, mut sockets, _device) = create_ethernet();
  3709. let mut eth_bytes = vec![0u8; 42];
  3710. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3711. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3712. let repr = ArpRepr::EthernetIpv4 {
  3713. operation: ArpOperation::Request,
  3714. source_hardware_addr: remote_hw_addr,
  3715. source_protocol_addr: remote_ip_addr,
  3716. target_hardware_addr: EthernetAddress::default(),
  3717. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]),
  3718. };
  3719. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3720. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3721. frame.set_src_addr(remote_hw_addr);
  3722. frame.set_ethertype(EthernetProtocol::Arp);
  3723. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3724. repr.emit(&mut packet);
  3725. // Ensure an ARP Request for someone else does not trigger an ARP Reply
  3726. assert_eq!(
  3727. iface
  3728. .inner
  3729. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3730. None
  3731. );
  3732. // Ensure the address of the requestor was NOT entered in the cache
  3733. assert_eq!(
  3734. iface.inner.lookup_hardware_addr(
  3735. MockTxToken,
  3736. &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])),
  3737. &IpAddress::Ipv4(remote_ip_addr)
  3738. ),
  3739. Err(Error::Unaddressable)
  3740. );
  3741. }
  3742. #[test]
  3743. #[cfg(all(
  3744. feature = "medium-ethernet",
  3745. feature = "proto-ipv4",
  3746. not(feature = "medium-ieee802154")
  3747. ))]
  3748. fn test_arp_flush_after_update_ip() {
  3749. let (mut iface, mut sockets, _device) = create_ethernet();
  3750. let mut eth_bytes = vec![0u8; 42];
  3751. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3752. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3753. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3754. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3755. let repr = ArpRepr::EthernetIpv4 {
  3756. operation: ArpOperation::Request,
  3757. source_hardware_addr: remote_hw_addr,
  3758. source_protocol_addr: remote_ip_addr,
  3759. target_hardware_addr: EthernetAddress::default(),
  3760. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3761. };
  3762. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3763. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3764. frame.set_src_addr(remote_hw_addr);
  3765. frame.set_ethertype(EthernetProtocol::Arp);
  3766. {
  3767. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3768. repr.emit(&mut packet);
  3769. }
  3770. // Ensure an ARP Request for us triggers an ARP Reply
  3771. assert_eq!(
  3772. iface
  3773. .inner
  3774. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3775. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3776. operation: ArpOperation::Reply,
  3777. source_hardware_addr: local_hw_addr,
  3778. source_protocol_addr: local_ip_addr,
  3779. target_hardware_addr: remote_hw_addr,
  3780. target_protocol_addr: remote_ip_addr
  3781. }))
  3782. );
  3783. // Ensure the address of the requestor was entered in the cache
  3784. assert_eq!(
  3785. iface.inner.lookup_hardware_addr(
  3786. MockTxToken,
  3787. &IpAddress::Ipv4(local_ip_addr),
  3788. &IpAddress::Ipv4(remote_ip_addr)
  3789. ),
  3790. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3791. );
  3792. // Update IP addrs to trigger ARP cache flush
  3793. let local_ip_addr_new = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3794. iface.update_ip_addrs(|addrs| {
  3795. addrs.iter_mut().next().map(|addr| {
  3796. *addr = IpCidr::Ipv4(Ipv4Cidr::new(local_ip_addr_new, 24));
  3797. });
  3798. });
  3799. // ARP cache flush after address change
  3800. assert!(!iface.inner.has_neighbor(&IpAddress::Ipv4(remote_ip_addr)));
  3801. }
  3802. #[test]
  3803. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  3804. fn test_icmpv4_socket() {
  3805. use crate::wire::Icmpv4Packet;
  3806. let (mut iface, mut sockets, _device) = create();
  3807. let rx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3808. let tx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3809. let icmpv4_socket = icmp::Socket::new(rx_buffer, tx_buffer);
  3810. let socket_handle = sockets.add(icmpv4_socket);
  3811. let ident = 0x1234;
  3812. let seq_no = 0x5432;
  3813. let echo_data = &[0xff; 16];
  3814. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3815. // Bind to the ID 0x1234
  3816. assert_eq!(socket.bind(icmp::Endpoint::Ident(ident)), Ok(()));
  3817. // Ensure the ident we bound to and the ident of the packet are the same.
  3818. let mut bytes = [0xff; 24];
  3819. let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
  3820. let echo_repr = Icmpv4Repr::EchoRequest {
  3821. ident,
  3822. seq_no,
  3823. data: echo_data,
  3824. };
  3825. echo_repr.emit(&mut packet, &ChecksumCapabilities::default());
  3826. let icmp_data = &packet.into_inner()[..];
  3827. let ipv4_repr = Ipv4Repr {
  3828. src_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x02),
  3829. dst_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x01),
  3830. next_header: IpProtocol::Icmp,
  3831. payload_len: 24,
  3832. hop_limit: 64,
  3833. };
  3834. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  3835. // Open a socket and ensure the packet is handled due to the listening
  3836. // socket.
  3837. assert!(!sockets.get_mut::<icmp::Socket>(socket_handle).can_recv());
  3838. // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening
  3839. let echo_reply = Icmpv4Repr::EchoReply {
  3840. ident,
  3841. seq_no,
  3842. data: echo_data,
  3843. };
  3844. let ipv4_reply = Ipv4Repr {
  3845. src_addr: ipv4_repr.dst_addr,
  3846. dst_addr: ipv4_repr.src_addr,
  3847. ..ipv4_repr
  3848. };
  3849. assert_eq!(
  3850. iface.inner.process_icmpv4(&mut sockets, ip_repr, icmp_data),
  3851. Some(IpPacket::Icmpv4((ipv4_reply, echo_reply)))
  3852. );
  3853. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3854. assert!(socket.can_recv());
  3855. assert_eq!(
  3856. socket.recv(),
  3857. Ok((
  3858. icmp_data,
  3859. IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02))
  3860. ))
  3861. );
  3862. }
  3863. #[test]
  3864. #[cfg(feature = "proto-ipv6")]
  3865. fn test_solicited_node_addrs() {
  3866. let (mut iface, _, _device) = create();
  3867. let mut new_addrs = vec![
  3868. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64),
  3869. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64),
  3870. ];
  3871. iface.update_ip_addrs(|addrs| {
  3872. new_addrs.extend(addrs.to_vec());
  3873. *addrs = From::from(new_addrs);
  3874. });
  3875. assert!(iface
  3876. .inner
  3877. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002)));
  3878. assert!(iface
  3879. .inner
  3880. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff)));
  3881. assert!(!iface
  3882. .inner
  3883. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003)));
  3884. }
  3885. #[test]
  3886. #[cfg(feature = "proto-ipv6")]
  3887. fn test_icmpv6_nxthdr_unknown() {
  3888. let (mut iface, mut sockets, _device) = create();
  3889. let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3890. let payload = [0x12, 0x34, 0x56, 0x78];
  3891. let ipv6_repr = Ipv6Repr {
  3892. src_addr: remote_ip_addr,
  3893. dst_addr: Ipv6Address::LOOPBACK,
  3894. next_header: IpProtocol::HopByHop,
  3895. payload_len: 12,
  3896. hop_limit: 0x40,
  3897. };
  3898. let mut bytes = vec![0; 52];
  3899. let frame = {
  3900. let ip_repr = IpRepr::Ipv6(ipv6_repr);
  3901. ip_repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3902. let mut offset = ipv6_repr.buffer_len();
  3903. {
  3904. let mut hbh_pkt = Ipv6HopByHopHeader::new_unchecked(&mut bytes[offset..]);
  3905. hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c));
  3906. hbh_pkt.set_header_len(0);
  3907. offset += 8;
  3908. {
  3909. let mut pad_pkt = Ipv6Option::new_unchecked(&mut *hbh_pkt.options_mut());
  3910. Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt);
  3911. }
  3912. {
  3913. let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]);
  3914. Ipv6OptionRepr::Pad1.emit(&mut pad_pkt);
  3915. }
  3916. }
  3917. bytes[offset..].copy_from_slice(&payload);
  3918. Ipv6Packet::new_unchecked(&bytes)
  3919. };
  3920. let reply_icmp_repr = Icmpv6Repr::ParamProblem {
  3921. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  3922. pointer: 40,
  3923. header: ipv6_repr,
  3924. data: &payload[..],
  3925. };
  3926. let reply_ipv6_repr = Ipv6Repr {
  3927. src_addr: Ipv6Address::LOOPBACK,
  3928. dst_addr: remote_ip_addr,
  3929. next_header: IpProtocol::Icmpv6,
  3930. payload_len: reply_icmp_repr.buffer_len(),
  3931. hop_limit: 0x40,
  3932. };
  3933. // Ensure the unknown next header causes a ICMPv6 Parameter Problem
  3934. // error message to be sent to the sender.
  3935. assert_eq!(
  3936. iface.inner.process_ipv6(&mut sockets, &frame),
  3937. Some(IpPacket::Icmpv6((reply_ipv6_repr, reply_icmp_repr)))
  3938. );
  3939. }
  3940. #[test]
  3941. #[cfg(feature = "proto-igmp")]
  3942. fn test_handle_igmp() {
  3943. fn recv_igmp(device: &mut Loopback, timestamp: Instant) -> Vec<(Ipv4Repr, IgmpRepr)> {
  3944. let caps = device.capabilities();
  3945. let checksum_caps = &caps.checksum;
  3946. recv_all(device, timestamp)
  3947. .iter()
  3948. .filter_map(|frame| {
  3949. let ipv4_packet = match caps.medium {
  3950. #[cfg(feature = "medium-ethernet")]
  3951. Medium::Ethernet => {
  3952. let eth_frame = EthernetFrame::new_checked(frame).ok()?;
  3953. Ipv4Packet::new_checked(eth_frame.payload()).ok()?
  3954. }
  3955. #[cfg(feature = "medium-ip")]
  3956. Medium::Ip => Ipv4Packet::new_checked(&frame[..]).ok()?,
  3957. #[cfg(feature = "medium-ieee802154")]
  3958. Medium::Ieee802154 => todo!(),
  3959. };
  3960. let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, checksum_caps).ok()?;
  3961. let ip_payload = ipv4_packet.payload();
  3962. let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?;
  3963. let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?;
  3964. Some((ipv4_repr, igmp_repr))
  3965. })
  3966. .collect::<Vec<_>>()
  3967. }
  3968. let groups = [
  3969. Ipv4Address::new(224, 0, 0, 22),
  3970. Ipv4Address::new(224, 0, 0, 56),
  3971. ];
  3972. let (mut iface, mut sockets, mut device) = create();
  3973. // Join multicast groups
  3974. let timestamp = Instant::now();
  3975. for group in &groups {
  3976. iface
  3977. .join_multicast_group(&mut device, *group, timestamp)
  3978. .unwrap();
  3979. }
  3980. let reports = recv_igmp(&mut device, timestamp);
  3981. assert_eq!(reports.len(), 2);
  3982. for (i, group_addr) in groups.iter().enumerate() {
  3983. assert_eq!(reports[i].0.next_header, IpProtocol::Igmp);
  3984. assert_eq!(reports[i].0.dst_addr, *group_addr);
  3985. assert_eq!(
  3986. reports[i].1,
  3987. IgmpRepr::MembershipReport {
  3988. group_addr: *group_addr,
  3989. version: IgmpVersion::Version2,
  3990. }
  3991. );
  3992. }
  3993. // General query
  3994. let timestamp = Instant::now();
  3995. const GENERAL_QUERY_BYTES: &[u8] = &[
  3996. 0x46, 0xc0, 0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02, 0x47, 0x43, 0xac, 0x16,
  3997. 0x63, 0x04, 0xe0, 0x00, 0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64, 0xec, 0x8f,
  3998. 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  3999. 0x00, 0x00, 0x00, 0x00,
  4000. ];
  4001. {
  4002. // Transmit GENERAL_QUERY_BYTES into loopback
  4003. let tx_token = device.transmit().unwrap();
  4004. tx_token
  4005. .consume(timestamp, GENERAL_QUERY_BYTES.len(), |buffer| {
  4006. buffer.copy_from_slice(GENERAL_QUERY_BYTES);
  4007. Ok(())
  4008. })
  4009. .unwrap();
  4010. }
  4011. // Trigger processing until all packets received through the
  4012. // loopback have been processed, including responses to
  4013. // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0
  4014. // pkts that could be checked.
  4015. iface.socket_ingress(&mut device, &mut sockets);
  4016. // Leave multicast groups
  4017. let timestamp = Instant::now();
  4018. for group in &groups {
  4019. iface
  4020. .leave_multicast_group(&mut device, *group, timestamp)
  4021. .unwrap();
  4022. }
  4023. let leaves = recv_igmp(&mut device, timestamp);
  4024. assert_eq!(leaves.len(), 2);
  4025. for (i, group_addr) in groups.iter().cloned().enumerate() {
  4026. assert_eq!(leaves[i].0.next_header, IpProtocol::Igmp);
  4027. assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS);
  4028. assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr });
  4029. }
  4030. }
  4031. #[test]
  4032. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))]
  4033. fn test_raw_socket_no_reply() {
  4034. use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4035. let (mut iface, mut sockets, _device) = create();
  4036. let packets = 1;
  4037. let rx_buffer =
  4038. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4039. let tx_buffer = raw::PacketBuffer::new(
  4040. vec![raw::PacketMetadata::EMPTY; packets],
  4041. vec![0; 48 * packets],
  4042. );
  4043. let raw_socket = raw::Socket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer);
  4044. sockets.add(raw_socket);
  4045. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4046. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4047. const PAYLOAD_LEN: usize = 10;
  4048. let udp_repr = UdpRepr {
  4049. src_port: 67,
  4050. dst_port: 68,
  4051. };
  4052. let mut bytes = vec![0xff; udp_repr.header_len() + PAYLOAD_LEN];
  4053. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4054. udp_repr.emit(
  4055. &mut packet,
  4056. &src_addr.into(),
  4057. &dst_addr.into(),
  4058. PAYLOAD_LEN,
  4059. |buf| fill_slice(buf, 0x2a),
  4060. &ChecksumCapabilities::default(),
  4061. );
  4062. let ipv4_repr = Ipv4Repr {
  4063. src_addr,
  4064. dst_addr,
  4065. next_header: IpProtocol::Udp,
  4066. hop_limit: 64,
  4067. payload_len: udp_repr.header_len() + PAYLOAD_LEN,
  4068. };
  4069. // Emit to frame
  4070. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + PAYLOAD_LEN];
  4071. let frame = {
  4072. ipv4_repr.emit(
  4073. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4074. &ChecksumCapabilities::default(),
  4075. );
  4076. udp_repr.emit(
  4077. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4078. &src_addr.into(),
  4079. &dst_addr.into(),
  4080. PAYLOAD_LEN,
  4081. |buf| fill_slice(buf, 0x2a),
  4082. &ChecksumCapabilities::default(),
  4083. );
  4084. Ipv4Packet::new_unchecked(&bytes)
  4085. };
  4086. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4087. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4088. #[cfg(feature = "proto-ipv4-fragmentation")]
  4089. assert_eq!(
  4090. iface.inner.process_ipv4(
  4091. &mut sockets,
  4092. &frame,
  4093. Some(&mut iface.fragments.ipv4_fragments)
  4094. ),
  4095. None
  4096. );
  4097. }
  4098. #[test]
  4099. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw", feature = "socket-udp"))]
  4100. fn test_raw_socket_with_udp_socket() {
  4101. use crate::wire::{IpEndpoint, IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4102. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  4103. let (mut iface, mut sockets, _device) = create();
  4104. let udp_rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4105. let udp_tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4106. let udp_socket = udp::Socket::new(udp_rx_buffer, udp_tx_buffer);
  4107. let udp_socket_handle = sockets.add(udp_socket);
  4108. // Bind the socket to port 68
  4109. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4110. assert_eq!(socket.bind(68), Ok(()));
  4111. assert!(!socket.can_recv());
  4112. assert!(socket.can_send());
  4113. let packets = 1;
  4114. let raw_rx_buffer =
  4115. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4116. let raw_tx_buffer = raw::PacketBuffer::new(
  4117. vec![raw::PacketMetadata::EMPTY; packets],
  4118. vec![0; 48 * packets],
  4119. );
  4120. let raw_socket = raw::Socket::new(
  4121. IpVersion::Ipv4,
  4122. IpProtocol::Udp,
  4123. raw_rx_buffer,
  4124. raw_tx_buffer,
  4125. );
  4126. sockets.add(raw_socket);
  4127. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4128. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4129. let udp_repr = UdpRepr {
  4130. src_port: 67,
  4131. dst_port: 68,
  4132. };
  4133. let mut bytes = vec![0xff; udp_repr.header_len() + UDP_PAYLOAD.len()];
  4134. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4135. udp_repr.emit(
  4136. &mut packet,
  4137. &src_addr.into(),
  4138. &dst_addr.into(),
  4139. UDP_PAYLOAD.len(),
  4140. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4141. &ChecksumCapabilities::default(),
  4142. );
  4143. let ipv4_repr = Ipv4Repr {
  4144. src_addr,
  4145. dst_addr,
  4146. next_header: IpProtocol::Udp,
  4147. hop_limit: 64,
  4148. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  4149. };
  4150. // Emit to frame
  4151. let mut bytes =
  4152. vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + UDP_PAYLOAD.len()];
  4153. let frame = {
  4154. ipv4_repr.emit(
  4155. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4156. &ChecksumCapabilities::default(),
  4157. );
  4158. udp_repr.emit(
  4159. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4160. &src_addr.into(),
  4161. &dst_addr.into(),
  4162. UDP_PAYLOAD.len(),
  4163. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4164. &ChecksumCapabilities::default(),
  4165. );
  4166. Ipv4Packet::new_unchecked(&bytes)
  4167. };
  4168. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4169. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4170. #[cfg(feature = "proto-ipv4-fragmentation")]
  4171. assert_eq!(
  4172. iface.inner.process_ipv4(
  4173. &mut sockets,
  4174. &frame,
  4175. Some(&mut iface.fragments.ipv4_fragments)
  4176. ),
  4177. None
  4178. );
  4179. // Make sure the UDP socket can still receive in presence of a Raw socket that handles UDP
  4180. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4181. assert!(socket.can_recv());
  4182. assert_eq!(
  4183. socket.recv(),
  4184. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_addr.into(), 67)))
  4185. );
  4186. }
  4187. }