ethernet.rs 113 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766
  1. // Heads up! Before working on this file you should read the parts
  2. // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
  3. // and RFCs 8200 and 4861 for any IPv6 and NDISC work.
  4. use core::cmp;
  5. use managed::{ManagedSlice, ManagedMap};
  6. #[cfg(not(feature = "proto-igmp"))]
  7. use core::marker::PhantomData;
  8. use crate::{Error, Result};
  9. use crate::phy::{Device, DeviceCapabilities, RxToken, TxToken};
  10. use crate::time::{Duration, Instant};
  11. use crate::wire::pretty_print::PrettyPrinter;
  12. use crate::wire::{EthernetAddress, EthernetProtocol, EthernetFrame};
  13. use crate::wire::{IpAddress, IpProtocol, IpRepr, IpCidr};
  14. #[cfg(feature = "proto-ipv6")]
  15. use crate::wire::{Ipv6Address, Ipv6Packet, Ipv6Repr, IPV6_MIN_MTU};
  16. #[cfg(feature = "proto-ipv4")]
  17. use crate::wire::{Ipv4Address, Ipv4Packet, Ipv4Repr, IPV4_MIN_MTU};
  18. #[cfg(feature = "proto-ipv4")]
  19. use crate::wire::{ArpPacket, ArpRepr, ArpOperation};
  20. #[cfg(feature = "proto-ipv4")]
  21. use crate::wire::{Icmpv4Packet, Icmpv4Repr, Icmpv4DstUnreachable};
  22. #[cfg(feature = "proto-igmp")]
  23. use crate::wire::{IgmpPacket, IgmpRepr, IgmpVersion};
  24. #[cfg(feature = "proto-ipv6")]
  25. use crate::wire::{Icmpv6Packet, Icmpv6Repr, Icmpv6ParamProblem};
  26. #[cfg(all(feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
  27. use crate::wire::IcmpRepr;
  28. #[cfg(feature = "proto-ipv6")]
  29. use crate::wire::{Ipv6HopByHopHeader, Ipv6HopByHopRepr};
  30. #[cfg(feature = "proto-ipv6")]
  31. use crate::wire::{Ipv6OptionRepr, Ipv6OptionFailureType};
  32. #[cfg(feature = "proto-ipv6")]
  33. use crate::wire::{NdiscNeighborFlags, NdiscRepr};
  34. #[cfg(all(feature = "proto-ipv6", feature = "socket-udp"))]
  35. use crate::wire::Icmpv6DstUnreachable;
  36. #[cfg(feature = "socket-udp")]
  37. use crate::wire::{UdpPacket, UdpRepr};
  38. #[cfg(feature = "socket-tcp")]
  39. use crate::wire::{TcpPacket, TcpRepr, TcpControl};
  40. use crate::socket::{Socket, SocketSet, AnySocket, PollAt};
  41. #[cfg(feature = "socket-raw")]
  42. use crate::socket::RawSocket;
  43. #[cfg(all(feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
  44. use crate::socket::IcmpSocket;
  45. #[cfg(feature = "socket-udp")]
  46. use crate::socket::UdpSocket;
  47. #[cfg(feature = "socket-tcp")]
  48. use crate::socket::TcpSocket;
  49. use crate::iface::{NeighborCache, NeighborAnswer};
  50. use crate::iface::Routes;
  51. /// An Ethernet network interface.
  52. ///
  53. /// The network interface logically owns a number of other data structures; to avoid
  54. /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
  55. /// a `&mut [T]`, or `Vec<T>` if a heap is available.
  56. pub struct Interface<'b, 'c, 'e, DeviceT: for<'d> Device<'d>> {
  57. device: DeviceT,
  58. inner: InterfaceInner<'b, 'c, 'e>,
  59. }
  60. /// The device independent part of an Ethernet network interface.
  61. ///
  62. /// Separating the device from the data required for prorcessing and dispatching makes
  63. /// it possible to borrow them independently. For example, the tx and rx tokens borrow
  64. /// the `device` mutably until they're used, which makes it impossible to call other
  65. /// methods on the `Interface` in this time (since its `device` field is borrowed
  66. /// exclusively). However, it is still possible to call methods on its `inner` field.
  67. struct InterfaceInner<'b, 'c, 'e> {
  68. neighbor_cache: NeighborCache<'b>,
  69. ethernet_addr: EthernetAddress,
  70. ip_addrs: ManagedSlice<'c, IpCidr>,
  71. #[cfg(feature = "proto-ipv4")]
  72. any_ip: bool,
  73. routes: Routes<'e>,
  74. #[cfg(feature = "proto-igmp")]
  75. ipv4_multicast_groups: ManagedMap<'e, Ipv4Address, ()>,
  76. #[cfg(not(feature = "proto-igmp"))]
  77. _ipv4_multicast_groups: PhantomData<&'e ()>,
  78. /// When to report for (all or) the next multicast group membership via IGMP
  79. #[cfg(feature = "proto-igmp")]
  80. igmp_report_state: IgmpReportState,
  81. device_capabilities: DeviceCapabilities,
  82. }
  83. /// A builder structure used for creating a Ethernet network
  84. /// interface.
  85. pub struct InterfaceBuilder <'b, 'c, 'e, DeviceT: for<'d> Device<'d>> {
  86. device: DeviceT,
  87. ethernet_addr: Option<EthernetAddress>,
  88. neighbor_cache: Option<NeighborCache<'b>>,
  89. ip_addrs: ManagedSlice<'c, IpCidr>,
  90. #[cfg(feature = "proto-ipv4")]
  91. any_ip: bool,
  92. routes: Routes<'e>,
  93. /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead.
  94. #[cfg(feature = "proto-igmp")]
  95. ipv4_multicast_groups: ManagedMap<'e, Ipv4Address, ()>,
  96. #[cfg(not(feature = "proto-igmp"))]
  97. _ipv4_multicast_groups: PhantomData<&'e ()>,
  98. }
  99. impl<'b, 'c, 'e, DeviceT> InterfaceBuilder<'b, 'c, 'e, DeviceT>
  100. where DeviceT: for<'d> Device<'d> {
  101. /// Create a builder used for creating a network interface using the
  102. /// given device and address.
  103. ///
  104. /// # Examples
  105. ///
  106. /// ```
  107. /// # use std::collections::BTreeMap;
  108. /// use smoltcp::iface::{EthernetInterfaceBuilder, NeighborCache};
  109. /// # use smoltcp::phy::Loopback;
  110. /// use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress};
  111. ///
  112. /// let device = // ...
  113. /// # Loopback::new();
  114. /// let hw_addr = // ...
  115. /// # EthernetAddress::default();
  116. /// let neighbor_cache = // ...
  117. /// # NeighborCache::new(BTreeMap::new());
  118. /// let ip_addrs = // ...
  119. /// # [];
  120. /// let iface = EthernetInterfaceBuilder::new(device)
  121. /// .ethernet_addr(hw_addr)
  122. /// .neighbor_cache(neighbor_cache)
  123. /// .ip_addrs(ip_addrs)
  124. /// .finalize();
  125. /// ```
  126. pub fn new(device: DeviceT) -> Self {
  127. InterfaceBuilder {
  128. device: device,
  129. ethernet_addr: None,
  130. neighbor_cache: None,
  131. ip_addrs: ManagedSlice::Borrowed(&mut []),
  132. #[cfg(feature = "proto-ipv4")]
  133. any_ip: false,
  134. routes: Routes::new(ManagedMap::Borrowed(&mut [])),
  135. #[cfg(feature = "proto-igmp")]
  136. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  137. #[cfg(not(feature = "proto-igmp"))]
  138. _ipv4_multicast_groups: PhantomData,
  139. }
  140. }
  141. /// Set the Ethernet address the interface will use. See also
  142. /// [ethernet_addr].
  143. ///
  144. /// # Panics
  145. /// This function panics if the address is not unicast.
  146. ///
  147. /// [ethernet_addr]: struct.EthernetInterface.html#method.ethernet_addr
  148. pub fn ethernet_addr(mut self, addr: EthernetAddress) -> Self {
  149. InterfaceInner::check_ethernet_addr(&addr);
  150. self.ethernet_addr = Some(addr);
  151. self
  152. }
  153. /// Set the IP addresses the interface will use. See also
  154. /// [ip_addrs].
  155. ///
  156. /// # Panics
  157. /// This function panics if any of the addresses are not unicast.
  158. ///
  159. /// [ip_addrs]: struct.EthernetInterface.html#method.ip_addrs
  160. pub fn ip_addrs<T>(mut self, ip_addrs: T) -> Self
  161. where T: Into<ManagedSlice<'c, IpCidr>>
  162. {
  163. let ip_addrs = ip_addrs.into();
  164. InterfaceInner::check_ip_addrs(&ip_addrs);
  165. self.ip_addrs = ip_addrs;
  166. self
  167. }
  168. /// Enable or disable the AnyIP capability, allowing packets to be received
  169. /// locally on IPv4 addresses other than the interface's configured [ip_addrs].
  170. /// When AnyIP is enabled and a route prefix in [routes] specifies one of
  171. /// the interface's [ip_addrs] as its gateway, the interface will accept
  172. /// packets addressed to that prefix.
  173. ///
  174. /// # IPv6
  175. ///
  176. /// This option is not available or required for IPv6 as packets sent to
  177. /// the interface are not filtered by IPv6 address.
  178. ///
  179. /// [routes]: struct.EthernetInterface.html#method.routes
  180. /// [ip_addrs]: struct.EthernetInterface.html#method.ip_addrs
  181. #[cfg(feature = "proto-ipv4")]
  182. pub fn any_ip(mut self, enabled: bool) -> Self {
  183. self.any_ip = enabled;
  184. self
  185. }
  186. /// Set the IP routes the interface will use. See also
  187. /// [routes].
  188. ///
  189. /// [routes]: struct.EthernetInterface.html#method.routes
  190. pub fn routes<T>(mut self, routes: T) -> InterfaceBuilder<'b, 'c, 'e, DeviceT>
  191. where T: Into<Routes<'e>>
  192. {
  193. self.routes = routes.into();
  194. self
  195. }
  196. /// Provide storage for multicast groups.
  197. ///
  198. /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`.
  199. /// Using [`join_multicast_group()`] will send initial membership reports.
  200. ///
  201. /// A previously destroyed interface can be recreated by reusing the multicast group
  202. /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`.
  203. /// Note that this way initial membership reports are **not** sent.
  204. ///
  205. /// [`join_multicast_group()`]: struct.EthernetInterface.html#method.join_multicast_group
  206. #[cfg(feature = "proto-igmp")]
  207. pub fn ipv4_multicast_groups<T>(mut self, ipv4_multicast_groups: T) -> Self
  208. where T: Into<ManagedMap<'e, Ipv4Address, ()>>
  209. {
  210. self.ipv4_multicast_groups = ipv4_multicast_groups.into();
  211. self
  212. }
  213. /// Set the Neighbor Cache the interface will use.
  214. pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'b>) -> Self {
  215. self.neighbor_cache = Some(neighbor_cache);
  216. self
  217. }
  218. /// Create a network interface using the previously provided configuration.
  219. ///
  220. /// # Panics
  221. /// If a required option is not provided, this function will panic. Required
  222. /// options are:
  223. ///
  224. /// - [ethernet_addr]
  225. /// - [neighbor_cache]
  226. ///
  227. /// [ethernet_addr]: #method.ethernet_addr
  228. /// [neighbor_cache]: #method.neighbor_cache
  229. pub fn finalize(self) -> Interface<'b, 'c, 'e, DeviceT> {
  230. match (self.ethernet_addr, self.neighbor_cache) {
  231. (Some(ethernet_addr), Some(neighbor_cache)) => {
  232. let device_capabilities = self.device.capabilities();
  233. Interface {
  234. device: self.device,
  235. inner: InterfaceInner {
  236. ethernet_addr, device_capabilities, neighbor_cache,
  237. ip_addrs: self.ip_addrs,
  238. #[cfg(feature = "proto-ipv4")]
  239. any_ip: self.any_ip,
  240. routes: self.routes,
  241. #[cfg(feature = "proto-igmp")]
  242. ipv4_multicast_groups: self.ipv4_multicast_groups,
  243. #[cfg(not(feature = "proto-igmp"))]
  244. _ipv4_multicast_groups: PhantomData,
  245. #[cfg(feature = "proto-igmp")]
  246. igmp_report_state: IgmpReportState::Inactive,
  247. }
  248. }
  249. },
  250. _ => panic!("a required option was not set"),
  251. }
  252. }
  253. }
  254. #[derive(Debug, PartialEq)]
  255. enum EthernetPacket<'a> {
  256. #[cfg(feature = "proto-ipv4")]
  257. Arp(ArpRepr),
  258. Ip(IpPacket<'a>),
  259. }
  260. #[derive(Debug, PartialEq)]
  261. pub(crate) enum IpPacket<'a> {
  262. #[cfg(feature = "proto-ipv4")]
  263. Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)),
  264. #[cfg(feature = "proto-igmp")]
  265. Igmp((Ipv4Repr, IgmpRepr)),
  266. #[cfg(feature = "proto-ipv6")]
  267. Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)),
  268. #[cfg(feature = "socket-raw")]
  269. Raw((IpRepr, &'a [u8])),
  270. #[cfg(feature = "socket-udp")]
  271. Udp((IpRepr, UdpRepr<'a>)),
  272. #[cfg(feature = "socket-tcp")]
  273. Tcp((IpRepr, TcpRepr<'a>))
  274. }
  275. impl<'a> IpPacket<'a> {
  276. pub(crate) fn ip_repr(&self) -> IpRepr {
  277. match self {
  278. #[cfg(feature = "proto-ipv4")]
  279. IpPacket::Icmpv4((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  280. #[cfg(feature = "proto-igmp")]
  281. IpPacket::Igmp((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  282. #[cfg(feature = "proto-ipv6")]
  283. IpPacket::Icmpv6((ipv6_repr, _)) => IpRepr::Ipv6(*ipv6_repr),
  284. #[cfg(feature = "socket-raw")]
  285. IpPacket::Raw((ip_repr, _)) => ip_repr.clone(),
  286. #[cfg(feature = "socket-udp")]
  287. IpPacket::Udp((ip_repr, _)) => ip_repr.clone(),
  288. #[cfg(feature = "socket-tcp")]
  289. IpPacket::Tcp((ip_repr, _)) => ip_repr.clone(),
  290. }
  291. }
  292. pub(crate) fn emit_payload(&self, _ip_repr: IpRepr, payload: &mut [u8], caps: &DeviceCapabilities) {
  293. match self {
  294. #[cfg(feature = "proto-ipv4")]
  295. IpPacket::Icmpv4((_, icmpv4_repr)) =>
  296. icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &caps.checksum),
  297. #[cfg(feature = "proto-igmp")]
  298. IpPacket::Igmp((_, igmp_repr)) =>
  299. igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload)),
  300. #[cfg(feature = "proto-ipv6")]
  301. IpPacket::Icmpv6((_, icmpv6_repr)) =>
  302. icmpv6_repr.emit(&_ip_repr.src_addr(), &_ip_repr.dst_addr(),
  303. &mut Icmpv6Packet::new_unchecked(payload), &caps.checksum),
  304. #[cfg(feature = "socket-raw")]
  305. IpPacket::Raw((_, raw_packet)) =>
  306. payload.copy_from_slice(raw_packet),
  307. #[cfg(feature = "socket-udp")]
  308. IpPacket::Udp((_, udp_repr)) =>
  309. udp_repr.emit(&mut UdpPacket::new_unchecked(payload),
  310. &_ip_repr.src_addr(), &_ip_repr.dst_addr(), &caps.checksum),
  311. #[cfg(feature = "socket-tcp")]
  312. IpPacket::Tcp((_, mut tcp_repr)) => {
  313. // This is a terrible hack to make TCP performance more acceptable on systems
  314. // where the TCP buffers are significantly larger than network buffers,
  315. // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window)
  316. // together with four 1500 B Ethernet receive buffers. If left untreated,
  317. // this would result in our peer pushing our window and sever packet loss.
  318. //
  319. // I'm really not happy about this "solution" but I don't know what else to do.
  320. if let Some(max_burst_size) = caps.max_burst_size {
  321. let mut max_segment_size = caps.max_transmission_unit;
  322. max_segment_size -= _ip_repr.buffer_len();
  323. max_segment_size -= tcp_repr.header_len();
  324. let max_window_size = max_burst_size * max_segment_size;
  325. if tcp_repr.window_len as usize > max_window_size {
  326. tcp_repr.window_len = max_window_size as u16;
  327. }
  328. }
  329. tcp_repr.emit(&mut TcpPacket::new_unchecked(payload),
  330. &_ip_repr.src_addr(), &_ip_repr.dst_addr(),
  331. &caps.checksum);
  332. }
  333. }
  334. }
  335. }
  336. #[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))]
  337. fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize {
  338. // Send back as much of the original payload as will fit within
  339. // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for
  340. // more details.
  341. //
  342. // Since the entire network layer packet must fit within the minumum
  343. // MTU supported, the payload must not exceed the following:
  344. //
  345. // <min mtu> - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size
  346. cmp::min(len, mtu - header_len * 2 - 8)
  347. }
  348. #[cfg(feature = "proto-igmp")]
  349. enum IgmpReportState {
  350. Inactive,
  351. ToGeneralQuery {
  352. version: IgmpVersion,
  353. timeout: Instant,
  354. interval: Duration,
  355. next_index: usize
  356. },
  357. ToSpecificQuery {
  358. version: IgmpVersion,
  359. timeout: Instant,
  360. group: Ipv4Address
  361. },
  362. }
  363. impl<'b, 'c, 'e, DeviceT> Interface<'b, 'c, 'e, DeviceT>
  364. where DeviceT: for<'d> Device<'d> {
  365. /// Get the Ethernet address of the interface.
  366. pub fn ethernet_addr(&self) -> EthernetAddress {
  367. self.inner.ethernet_addr
  368. }
  369. /// Set the Ethernet address of the interface.
  370. ///
  371. /// # Panics
  372. /// This function panics if the address is not unicast.
  373. pub fn set_ethernet_addr(&mut self, addr: EthernetAddress) {
  374. self.inner.ethernet_addr = addr;
  375. InterfaceInner::check_ethernet_addr(&self.inner.ethernet_addr);
  376. }
  377. /// Get a reference to the inner device.
  378. pub fn device(&self) -> &DeviceT {
  379. &self.device
  380. }
  381. /// Get a mutable reference to the inner device.
  382. ///
  383. /// There are no invariants imposed on the device by the interface itself. Furthermore the
  384. /// trait implementations, required for references of all lifetimes, guarantees that the
  385. /// mutable reference can not invalidate the device as such. For some devices, such access may
  386. /// still allow modifications with adverse effects on the usability as a `phy` device. You
  387. /// should not use them this way.
  388. pub fn device_mut(&mut self) -> &mut DeviceT {
  389. &mut self.device
  390. }
  391. /// Add an address to a list of subscribed multicast IP addresses.
  392. ///
  393. /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent`
  394. /// indicates whether an initial immediate announcement has been sent.
  395. pub fn join_multicast_group<T: Into<IpAddress>>(&mut self, addr: T, _timestamp: Instant) -> Result<bool> {
  396. match addr.into() {
  397. #[cfg(feature = "proto-igmp")]
  398. IpAddress::Ipv4(addr) => {
  399. let is_not_new = self.inner.ipv4_multicast_groups.insert(addr, ())
  400. .map_err(|_| Error::Exhausted)?
  401. .is_some();
  402. if is_not_new {
  403. Ok(false)
  404. } else if let Some(pkt) =
  405. self.inner.igmp_report_packet(IgmpVersion::Version2, addr) {
  406. // Send initial membership report
  407. let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
  408. self.inner.dispatch(tx_token, _timestamp, EthernetPacket::Ip(pkt))?;
  409. Ok(true)
  410. } else {
  411. Ok(false)
  412. }
  413. }
  414. // Multicast is not yet implemented for other address families
  415. _ => Err(Error::Unaddressable)
  416. }
  417. }
  418. /// Remove an address from the subscribed multicast IP addresses.
  419. ///
  420. /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent`
  421. /// indicates whether an immediate leave packet has been sent.
  422. pub fn leave_multicast_group<T: Into<IpAddress>>(&mut self, addr: T, _timestamp: Instant) -> Result<bool> {
  423. match addr.into() {
  424. #[cfg(feature = "proto-igmp")]
  425. IpAddress::Ipv4(addr) => {
  426. let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr)
  427. .is_none();
  428. if was_not_present {
  429. Ok(false)
  430. } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) {
  431. // Send group leave packet
  432. let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
  433. self.inner.dispatch(tx_token, _timestamp, EthernetPacket::Ip(pkt))?;
  434. Ok(true)
  435. } else {
  436. Ok(false)
  437. }
  438. }
  439. // Multicast is not yet implemented for other address families
  440. _ => Err(Error::Unaddressable)
  441. }
  442. }
  443. /// Check whether the interface listens to given destination multicast IP address.
  444. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  445. self.inner.has_multicast_group(addr)
  446. }
  447. /// Get the IP addresses of the interface.
  448. pub fn ip_addrs(&self) -> &[IpCidr] {
  449. self.inner.ip_addrs.as_ref()
  450. }
  451. /// Get the first IPv4 address if present.
  452. #[cfg(feature = "proto-ipv4")]
  453. pub fn ipv4_addr(&self) -> Option<Ipv4Address> {
  454. self.ip_addrs().iter()
  455. .filter_map(|cidr| match cidr.address() {
  456. IpAddress::Ipv4(addr) => Some(addr),
  457. _ => None,
  458. }).next()
  459. }
  460. /// Update the IP addresses of the interface.
  461. ///
  462. /// # Panics
  463. /// This function panics if any of the addresses are not unicast.
  464. pub fn update_ip_addrs<F: FnOnce(&mut ManagedSlice<'c, IpCidr>)>(&mut self, f: F) {
  465. f(&mut self.inner.ip_addrs);
  466. InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
  467. }
  468. /// Check whether the interface has the given IP address assigned.
  469. pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  470. self.inner.has_ip_addr(addr)
  471. }
  472. /// Get the first IPv4 address of the interface.
  473. #[cfg(feature = "proto-ipv4")]
  474. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  475. self.inner.ipv4_address()
  476. }
  477. pub fn routes(&self) -> &Routes<'e> {
  478. &self.inner.routes
  479. }
  480. pub fn routes_mut(&mut self) -> &mut Routes<'e> {
  481. &mut self.inner.routes
  482. }
  483. /// Transmit packets queued in the given sockets, and receive packets queued
  484. /// in the device.
  485. ///
  486. /// This function returns a boolean value indicating whether any packets were
  487. /// processed or emitted, and thus, whether the readiness of any socket might
  488. /// have changed.
  489. ///
  490. /// # Errors
  491. /// This method will routinely return errors in response to normal network
  492. /// activity as well as certain boundary conditions such as buffer exhaustion.
  493. /// These errors are provided as an aid for troubleshooting, and are meant
  494. /// to be logged and ignored.
  495. ///
  496. /// As a special case, `Err(Error::Unrecognized)` is returned in response to
  497. /// packets containing any unsupported protocol, option, or form, which is
  498. /// a very common occurrence and on a production system it should not even
  499. /// be logged.
  500. pub fn poll(&mut self, sockets: &mut SocketSet, timestamp: Instant) -> Result<bool> {
  501. let mut readiness_may_have_changed = false;
  502. loop {
  503. let processed_any = self.socket_ingress(sockets, timestamp)?;
  504. let emitted_any = self.socket_egress(sockets, timestamp)?;
  505. #[cfg(feature = "proto-igmp")]
  506. self.igmp_egress(timestamp)?;
  507. if processed_any || emitted_any {
  508. readiness_may_have_changed = true;
  509. } else {
  510. break
  511. }
  512. }
  513. Ok(readiness_may_have_changed)
  514. }
  515. /// Return a _soft deadline_ for calling [poll] the next time.
  516. /// The [Instant] returned is the time at which you should call [poll] next.
  517. /// It is harmless (but wastes energy) to call it before the [Instant], and
  518. /// potentially harmful (impacting quality of service) to call it after the
  519. /// [Instant]
  520. ///
  521. /// [poll]: #method.poll
  522. /// [Instant]: struct.Instant.html
  523. pub fn poll_at(&self, sockets: &SocketSet, timestamp: Instant) -> Option<Instant> {
  524. sockets.iter().filter_map(|socket| {
  525. let socket_poll_at = socket.poll_at();
  526. match socket.meta().poll_at(socket_poll_at, |ip_addr|
  527. self.inner.has_neighbor(&ip_addr, timestamp)) {
  528. PollAt::Ingress => None,
  529. PollAt::Time(instant) => Some(instant),
  530. PollAt::Now => Some(Instant::from_millis(0)),
  531. }
  532. }).min()
  533. }
  534. /// Return an _advisory wait time_ for calling [poll] the next time.
  535. /// The [Duration] returned is the time left to wait before calling [poll] next.
  536. /// It is harmless (but wastes energy) to call it before the [Duration] has passed,
  537. /// and potentially harmful (impacting quality of service) to call it after the
  538. /// [Duration] has passed.
  539. ///
  540. /// [poll]: #method.poll
  541. /// [Duration]: struct.Duration.html
  542. pub fn poll_delay(&self, sockets: &SocketSet, timestamp: Instant) -> Option<Duration> {
  543. match self.poll_at(sockets, timestamp) {
  544. Some(poll_at) if timestamp < poll_at => {
  545. Some(poll_at - timestamp)
  546. }
  547. Some(_) => {
  548. Some(Duration::from_millis(0))
  549. }
  550. _ => None
  551. }
  552. }
  553. fn socket_ingress(&mut self, sockets: &mut SocketSet, timestamp: Instant) -> Result<bool> {
  554. let mut processed_any = false;
  555. loop {
  556. let &mut Self { ref mut device, ref mut inner } = self;
  557. let (rx_token, tx_token) = match device.receive() {
  558. None => break,
  559. Some(tokens) => tokens,
  560. };
  561. rx_token.consume(timestamp, |frame| {
  562. inner.process_ethernet(sockets, timestamp, &frame).map_err(|err| {
  563. net_debug!("cannot process ingress packet: {}", err);
  564. net_debug!("packet dump follows:\n{}",
  565. PrettyPrinter::<EthernetFrame<&[u8]>>::new("", &frame));
  566. err
  567. }).and_then(|response| {
  568. processed_any = true;
  569. match response {
  570. Some(packet) => {
  571. inner.dispatch(tx_token, timestamp, packet).map_err(|err| {
  572. net_debug!("cannot dispatch response packet: {}", err);
  573. err
  574. })
  575. }
  576. None => Ok(())
  577. }
  578. })
  579. })?;
  580. }
  581. Ok(processed_any)
  582. }
  583. fn socket_egress(&mut self, sockets: &mut SocketSet, timestamp: Instant) -> Result<bool> {
  584. let mut caps = self.device.capabilities();
  585. caps.max_transmission_unit -= EthernetFrame::<&[u8]>::header_len();
  586. let mut emitted_any = false;
  587. for mut socket in sockets.iter_mut() {
  588. if !socket.meta_mut().egress_permitted(timestamp, |ip_addr|
  589. self.inner.has_neighbor(&ip_addr, timestamp)) {
  590. continue
  591. }
  592. let mut neighbor_addr = None;
  593. let mut device_result = Ok(());
  594. let &mut Self { ref mut device, ref mut inner } = self;
  595. macro_rules! respond {
  596. ($response:expr) => ({
  597. let response = $response;
  598. neighbor_addr = Some(response.ip_repr().dst_addr());
  599. let response = EthernetPacket::Ip(response);
  600. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  601. device_result = inner.dispatch(tx_token, timestamp, response);
  602. device_result
  603. })
  604. }
  605. let socket_result =
  606. match *socket {
  607. #[cfg(feature = "socket-raw")]
  608. Socket::Raw(ref mut socket) =>
  609. socket.dispatch(&caps.checksum, |response|
  610. respond!(IpPacket::Raw(response))),
  611. #[cfg(all(feature = "socket-icmp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
  612. Socket::Icmp(ref mut socket) =>
  613. socket.dispatch(&caps, |response| {
  614. match response {
  615. #[cfg(feature = "proto-ipv4")]
  616. (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) =>
  617. respond!(IpPacket::Icmpv4((ipv4_repr, icmpv4_repr))),
  618. #[cfg(feature = "proto-ipv6")]
  619. (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) =>
  620. respond!(IpPacket::Icmpv6((ipv6_repr, icmpv6_repr))),
  621. _ => Err(Error::Unaddressable)
  622. }
  623. }),
  624. #[cfg(feature = "socket-udp")]
  625. Socket::Udp(ref mut socket) =>
  626. socket.dispatch(|response|
  627. respond!(IpPacket::Udp(response))),
  628. #[cfg(feature = "socket-tcp")]
  629. Socket::Tcp(ref mut socket) =>
  630. socket.dispatch(timestamp, &caps, |response|
  631. respond!(IpPacket::Tcp(response))),
  632. };
  633. match (device_result, socket_result) {
  634. (Err(Error::Exhausted), _) => break, // nowhere to transmit
  635. (Ok(()), Err(Error::Exhausted)) => (), // nothing to transmit
  636. (Err(Error::Unaddressable), _) => {
  637. // `NeighborCache` already takes care of rate limiting the neighbor discovery
  638. // requests from the socket. However, without an additional rate limiting
  639. // mechanism, we would spin on every socket that has yet to discover its
  640. // neighboor.
  641. socket.meta_mut().neighbor_missing(timestamp,
  642. neighbor_addr.expect("non-IP response packet"));
  643. break
  644. }
  645. (Err(err), _) | (_, Err(err)) => {
  646. net_debug!("{}: cannot dispatch egress packet: {}",
  647. socket.meta().handle, err);
  648. return Err(err)
  649. }
  650. (Ok(()), Ok(())) => emitted_any = true
  651. }
  652. }
  653. Ok(emitted_any)
  654. }
  655. /// Depending on `igmp_report_state` and the therein contained
  656. /// timeouts, send IGMP membership reports.
  657. #[cfg(feature = "proto-igmp")]
  658. fn igmp_egress(&mut self, timestamp: Instant) -> Result<bool> {
  659. match self.inner.igmp_report_state {
  660. IgmpReportState::ToSpecificQuery { version, timeout, group }
  661. if timestamp >= timeout => {
  662. if let Some(pkt) = self.inner.igmp_report_packet(version, group) {
  663. // Send initial membership report
  664. let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
  665. self.inner.dispatch(tx_token, timestamp, EthernetPacket::Ip(pkt))?;
  666. }
  667. self.inner.igmp_report_state = IgmpReportState::Inactive;
  668. Ok(true)
  669. }
  670. IgmpReportState::ToGeneralQuery { version, timeout, interval, next_index }
  671. if timestamp >= timeout => {
  672. let addr = self.inner.ipv4_multicast_groups
  673. .iter()
  674. .nth(next_index)
  675. .map(|(addr, ())| *addr);
  676. match addr {
  677. Some(addr) => {
  678. if let Some(pkt) = self.inner.igmp_report_packet(version, addr) {
  679. // Send initial membership report
  680. let tx_token = self.device.transmit().ok_or(Error::Exhausted)?;
  681. self.inner.dispatch(tx_token, timestamp, EthernetPacket::Ip(pkt))?;
  682. }
  683. let next_timeout = (timeout + interval).max(timestamp);
  684. self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery {
  685. version, timeout: next_timeout, interval, next_index: next_index + 1
  686. };
  687. Ok(true)
  688. }
  689. None => {
  690. self.inner.igmp_report_state = IgmpReportState::Inactive;
  691. Ok(false)
  692. }
  693. }
  694. }
  695. _ => Ok(false)
  696. }
  697. }
  698. }
  699. impl<'b, 'c, 'e> InterfaceInner<'b, 'c, 'e> {
  700. fn check_ethernet_addr(addr: &EthernetAddress) {
  701. if addr.is_multicast() {
  702. panic!("Ethernet address {} is not unicast", addr)
  703. }
  704. }
  705. fn check_ip_addrs(addrs: &[IpCidr]) {
  706. for cidr in addrs {
  707. if !cidr.address().is_unicast() && !cidr.address().is_unspecified() {
  708. panic!("IP address {} is not unicast", cidr.address())
  709. }
  710. }
  711. }
  712. /// Determine if the given `Ipv6Address` is the solicited node
  713. /// multicast address for a IPv6 addresses assigned to the interface.
  714. /// See [RFC 4291 § 2.7.1] for more details.
  715. ///
  716. /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
  717. #[cfg(feature = "proto-ipv6")]
  718. pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool {
  719. self.ip_addrs.iter().any(|cidr| {
  720. match *cidr {
  721. IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK=> {
  722. // Take the lower order 24 bits of the IPv6 address and
  723. // append those bits to FF02:0:0:0:0:1:FF00::/104.
  724. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..]
  725. }
  726. _ => false,
  727. }
  728. })
  729. }
  730. /// Check whether the interface has the given IP address assigned.
  731. fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  732. let addr = addr.into();
  733. self.ip_addrs.iter().any(|probe| probe.address() == addr)
  734. }
  735. /// Get the first IPv4 address of the interface.
  736. #[cfg(feature = "proto-ipv4")]
  737. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  738. self.ip_addrs.iter()
  739. .filter_map(
  740. |addr| match *addr {
  741. IpCidr::Ipv4(cidr) => Some(cidr.address()),
  742. #[cfg(feature = "proto-ipv6")]
  743. IpCidr::Ipv6(_) => None
  744. })
  745. .next()
  746. }
  747. /// Check whether the interface listens to given destination multicast IP address.
  748. ///
  749. /// If built without feature `proto-igmp` this function will
  750. /// always return `false`.
  751. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  752. match addr.into() {
  753. #[cfg(feature = "proto-igmp")]
  754. IpAddress::Ipv4(key) =>
  755. key == Ipv4Address::MULTICAST_ALL_SYSTEMS ||
  756. self.ipv4_multicast_groups.get(&key).is_some(),
  757. _ =>
  758. false,
  759. }
  760. }
  761. fn process_ethernet<'frame, T: AsRef<[u8]>>
  762. (&mut self, sockets: &mut SocketSet, timestamp: Instant, frame: &'frame T) ->
  763. Result<Option<EthernetPacket<'frame>>>
  764. {
  765. let eth_frame = EthernetFrame::new_checked(frame)?;
  766. // Ignore any packets not directed to our hardware address or any of the multicast groups.
  767. if !eth_frame.dst_addr().is_broadcast() &&
  768. !eth_frame.dst_addr().is_multicast() &&
  769. eth_frame.dst_addr() != self.ethernet_addr
  770. {
  771. return Ok(None)
  772. }
  773. match eth_frame.ethertype() {
  774. #[cfg(feature = "proto-ipv4")]
  775. EthernetProtocol::Arp =>
  776. self.process_arp(timestamp, &eth_frame),
  777. #[cfg(feature = "proto-ipv4")]
  778. EthernetProtocol::Ipv4 =>
  779. self.process_ipv4(sockets, timestamp, &eth_frame).map(|o| o.map(EthernetPacket::Ip)),
  780. #[cfg(feature = "proto-ipv6")]
  781. EthernetProtocol::Ipv6 =>
  782. self.process_ipv6(sockets, timestamp, &eth_frame).map(|o| o.map(EthernetPacket::Ip)),
  783. // Drop all other traffic.
  784. _ => Err(Error::Unrecognized),
  785. }
  786. }
  787. #[cfg(feature = "proto-ipv4")]
  788. fn process_arp<'frame, T: AsRef<[u8]>>
  789. (&mut self, timestamp: Instant, eth_frame: &EthernetFrame<&'frame T>) ->
  790. Result<Option<EthernetPacket<'frame>>>
  791. {
  792. let arp_packet = ArpPacket::new_checked(eth_frame.payload())?;
  793. let arp_repr = ArpRepr::parse(&arp_packet)?;
  794. match arp_repr {
  795. // Respond to ARP requests aimed at us, and fill the ARP cache from all ARP
  796. // requests and replies, to minimize the chance that we have to perform
  797. // an explicit ARP request.
  798. ArpRepr::EthernetIpv4 {
  799. operation, source_hardware_addr, source_protocol_addr, target_protocol_addr, ..
  800. } => {
  801. if source_protocol_addr.is_unicast() && source_hardware_addr.is_unicast() {
  802. self.neighbor_cache.fill(source_protocol_addr.into(),
  803. source_hardware_addr,
  804. timestamp);
  805. } else {
  806. // Discard packets with non-unicast source addresses.
  807. net_debug!("non-unicast source address");
  808. return Err(Error::Malformed)
  809. }
  810. if operation == ArpOperation::Request && self.has_ip_addr(target_protocol_addr) {
  811. Ok(Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  812. operation: ArpOperation::Reply,
  813. source_hardware_addr: self.ethernet_addr,
  814. source_protocol_addr: target_protocol_addr,
  815. target_hardware_addr: source_hardware_addr,
  816. target_protocol_addr: source_protocol_addr
  817. })))
  818. } else {
  819. Ok(None)
  820. }
  821. }
  822. }
  823. }
  824. #[cfg(all(any(feature = "proto-ipv4", feature = "proto-ipv6"), feature = "socket-raw"))]
  825. fn raw_socket_filter<'frame>(&mut self, sockets: &mut SocketSet, ip_repr: &IpRepr,
  826. ip_payload: &'frame [u8]) -> bool {
  827. let checksum_caps = self.device_capabilities.checksum.clone();
  828. let mut handled_by_raw_socket = false;
  829. // Pass every IP packet to all raw sockets we have registered.
  830. for mut raw_socket in sockets.iter_mut().filter_map(RawSocket::downcast) {
  831. if !raw_socket.accepts(&ip_repr) { continue }
  832. match raw_socket.process(&ip_repr, ip_payload, &checksum_caps) {
  833. // The packet is valid and handled by socket.
  834. Ok(()) => handled_by_raw_socket = true,
  835. // The socket buffer is full or the packet was truncated
  836. Err(Error::Exhausted) | Err(Error::Truncated) => (),
  837. // Raw sockets don't validate the packets in any way.
  838. Err(_) => unreachable!(),
  839. }
  840. }
  841. handled_by_raw_socket
  842. }
  843. #[cfg(feature = "proto-ipv6")]
  844. fn process_ipv6<'frame, T: AsRef<[u8]>>
  845. (&mut self, sockets: &mut SocketSet, timestamp: Instant,
  846. eth_frame: &EthernetFrame<&'frame T>) ->
  847. Result<Option<IpPacket<'frame>>>
  848. {
  849. let ipv6_packet = Ipv6Packet::new_checked(eth_frame.payload())?;
  850. let ipv6_repr = Ipv6Repr::parse(&ipv6_packet)?;
  851. if !ipv6_repr.src_addr.is_unicast() {
  852. // Discard packets with non-unicast source addresses.
  853. net_debug!("non-unicast source address");
  854. return Err(Error::Malformed)
  855. }
  856. if eth_frame.src_addr().is_unicast() {
  857. // Fill the neighbor cache from IP header of unicast frames.
  858. let ip_addr = IpAddress::Ipv6(ipv6_repr.src_addr);
  859. if self.in_same_network(&ip_addr) &&
  860. !self.neighbor_cache.lookup(&ip_addr, timestamp).found() {
  861. self.neighbor_cache.fill(ip_addr, eth_frame.src_addr(), timestamp);
  862. }
  863. }
  864. let ip_payload = ipv6_packet.payload();
  865. #[cfg(feature = "socket-raw")]
  866. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ipv6_repr.into(), ip_payload);
  867. #[cfg(not(feature = "socket-raw"))]
  868. let handled_by_raw_socket = false;
  869. self.process_nxt_hdr(sockets, timestamp, ipv6_repr, ipv6_repr.next_header,
  870. handled_by_raw_socket, ip_payload)
  871. }
  872. /// Given the next header value forward the payload onto the correct process
  873. /// function.
  874. #[cfg(feature = "proto-ipv6")]
  875. fn process_nxt_hdr<'frame>
  876. (&mut self, sockets: &mut SocketSet, timestamp: Instant, ipv6_repr: Ipv6Repr,
  877. nxt_hdr: IpProtocol, handled_by_raw_socket: bool, ip_payload: &'frame [u8])
  878. -> Result<Option<IpPacket<'frame>>>
  879. {
  880. match nxt_hdr {
  881. IpProtocol::Icmpv6 =>
  882. self.process_icmpv6(sockets, timestamp, ipv6_repr.into(), ip_payload),
  883. #[cfg(feature = "socket-udp")]
  884. IpProtocol::Udp =>
  885. self.process_udp(sockets, ipv6_repr.into(), handled_by_raw_socket, ip_payload),
  886. #[cfg(feature = "socket-tcp")]
  887. IpProtocol::Tcp =>
  888. self.process_tcp(sockets, timestamp, ipv6_repr.into(), ip_payload),
  889. IpProtocol::HopByHop =>
  890. self.process_hopbyhop(sockets, timestamp, ipv6_repr, handled_by_raw_socket, ip_payload),
  891. #[cfg(feature = "socket-raw")]
  892. _ if handled_by_raw_socket =>
  893. Ok(None),
  894. _ => {
  895. // Send back as much of the original payload as we can.
  896. let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU,
  897. ipv6_repr.buffer_len());
  898. let icmp_reply_repr = Icmpv6Repr::ParamProblem {
  899. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  900. // The offending packet is after the IPv6 header.
  901. pointer: ipv6_repr.buffer_len() as u32,
  902. header: ipv6_repr,
  903. data: &ip_payload[0..payload_len]
  904. };
  905. Ok(self.icmpv6_reply(ipv6_repr, icmp_reply_repr))
  906. },
  907. }
  908. }
  909. #[cfg(feature = "proto-ipv4")]
  910. fn process_ipv4<'frame, T: AsRef<[u8]>>
  911. (&mut self, sockets: &mut SocketSet, timestamp: Instant,
  912. eth_frame: &EthernetFrame<&'frame T>) ->
  913. Result<Option<IpPacket<'frame>>>
  914. {
  915. let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload())?;
  916. let checksum_caps = self.device_capabilities.checksum.clone();
  917. let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, &checksum_caps)?;
  918. if !ipv4_repr.src_addr.is_unicast() {
  919. // Discard packets with non-unicast source addresses.
  920. net_debug!("non-unicast source address");
  921. return Err(Error::Malformed)
  922. }
  923. if eth_frame.src_addr().is_unicast() {
  924. // Fill the neighbor cache from IP header of unicast frames.
  925. let ip_addr = IpAddress::Ipv4(ipv4_repr.src_addr);
  926. if self.in_same_network(&ip_addr) {
  927. self.neighbor_cache.fill(ip_addr, eth_frame.src_addr(), timestamp);
  928. }
  929. }
  930. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  931. let ip_payload = ipv4_packet.payload();
  932. #[cfg(feature = "socket-raw")]
  933. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);
  934. #[cfg(not(feature = "socket-raw"))]
  935. let handled_by_raw_socket = false;
  936. if !self.has_ip_addr(ipv4_repr.dst_addr) &&
  937. !ipv4_repr.dst_addr.is_broadcast() &&
  938. !self.has_multicast_group(ipv4_repr.dst_addr) {
  939. // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups.
  940. // If AnyIP is enabled, also check if the packet is routed locally.
  941. if !self.any_ip ||
  942. self.routes.lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), timestamp)
  943. .map_or(true, |router_addr| !self.has_ip_addr(router_addr)) {
  944. return Ok(None);
  945. }
  946. }
  947. match ipv4_repr.protocol {
  948. IpProtocol::Icmp =>
  949. self.process_icmpv4(sockets, ip_repr, ip_payload),
  950. #[cfg(feature = "proto-igmp")]
  951. IpProtocol::Igmp =>
  952. self.process_igmp(timestamp, ipv4_repr, ip_payload),
  953. #[cfg(feature = "socket-udp")]
  954. IpProtocol::Udp =>
  955. self.process_udp(sockets, ip_repr, handled_by_raw_socket, ip_payload),
  956. #[cfg(feature = "socket-tcp")]
  957. IpProtocol::Tcp =>
  958. self.process_tcp(sockets, timestamp, ip_repr, ip_payload),
  959. _ if handled_by_raw_socket =>
  960. Ok(None),
  961. _ => {
  962. // Send back as much of the original payload as we can.
  963. let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU,
  964. ipv4_repr.buffer_len());
  965. let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
  966. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  967. header: ipv4_repr,
  968. data: &ip_payload[0..payload_len]
  969. };
  970. Ok(self.icmpv4_reply(ipv4_repr, icmp_reply_repr))
  971. }
  972. }
  973. }
  974. /// Host duties of the **IGMPv2** protocol.
  975. ///
  976. /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries.
  977. /// Membership must not be reported immediately in order to avoid flooding the network
  978. /// after a query is broadcasted by a router; this is not currently done.
  979. #[cfg(feature = "proto-igmp")]
  980. fn process_igmp<'frame>(&mut self, timestamp: Instant, ipv4_repr: Ipv4Repr,
  981. ip_payload: &'frame [u8]) -> Result<Option<IpPacket<'frame>>> {
  982. let igmp_packet = IgmpPacket::new_checked(ip_payload)?;
  983. let igmp_repr = IgmpRepr::parse(&igmp_packet)?;
  984. // FIXME: report membership after a delay
  985. match igmp_repr {
  986. IgmpRepr::MembershipQuery { group_addr, version, max_resp_time } => {
  987. // General query
  988. if group_addr.is_unspecified() &&
  989. ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS {
  990. // Are we member in any groups?
  991. if self.ipv4_multicast_groups.iter().next().is_some() {
  992. let interval = match version {
  993. IgmpVersion::Version1 =>
  994. Duration::from_millis(100),
  995. IgmpVersion::Version2 => {
  996. // No dependence on a random generator
  997. // (see [#24](https://github.com/m-labs/smoltcp/issues/24))
  998. // but at least spread reports evenly across max_resp_time.
  999. let intervals = self.ipv4_multicast_groups.len() as u32 + 1;
  1000. max_resp_time / intervals
  1001. }
  1002. };
  1003. self.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1004. version, timeout: timestamp + interval, interval, next_index: 0
  1005. };
  1006. }
  1007. } else {
  1008. // Group-specific query
  1009. if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr {
  1010. // Don't respond immediately
  1011. let timeout = max_resp_time / 4;
  1012. self.igmp_report_state = IgmpReportState::ToSpecificQuery {
  1013. version, timeout: timestamp + timeout, group: group_addr
  1014. };
  1015. }
  1016. }
  1017. },
  1018. // Ignore membership reports
  1019. IgmpRepr::MembershipReport { .. } => (),
  1020. // Ignore hosts leaving groups
  1021. IgmpRepr::LeaveGroup{ .. } => (),
  1022. }
  1023. Ok(None)
  1024. }
  1025. #[cfg(feature = "proto-ipv6")]
  1026. fn process_icmpv6<'frame>(&mut self, _sockets: &mut SocketSet, timestamp: Instant,
  1027. ip_repr: IpRepr, ip_payload: &'frame [u8]) -> Result<Option<IpPacket<'frame>>>
  1028. {
  1029. let icmp_packet = Icmpv6Packet::new_checked(ip_payload)?;
  1030. let checksum_caps = self.device_capabilities.checksum.clone();
  1031. let icmp_repr = Icmpv6Repr::parse(&ip_repr.src_addr(), &ip_repr.dst_addr(),
  1032. &icmp_packet, &checksum_caps)?;
  1033. #[cfg(feature = "socket-icmp")]
  1034. let mut handled_by_icmp_socket = false;
  1035. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))]
  1036. for mut icmp_socket in _sockets.iter_mut().filter_map(IcmpSocket::downcast) {
  1037. if !icmp_socket.accepts(&ip_repr, &icmp_repr.into(), &checksum_caps) { continue }
  1038. match icmp_socket.process(&ip_repr, &icmp_repr.into(), &checksum_caps) {
  1039. // The packet is valid and handled by socket.
  1040. Ok(()) => handled_by_icmp_socket = true,
  1041. // The socket buffer is full.
  1042. Err(Error::Exhausted) => (),
  1043. // ICMP sockets don't validate the packets in any way.
  1044. Err(_) => unreachable!(),
  1045. }
  1046. }
  1047. match icmp_repr {
  1048. // Respond to echo requests.
  1049. Icmpv6Repr::EchoRequest { ident, seq_no, data } => {
  1050. match ip_repr {
  1051. IpRepr::Ipv6(ipv6_repr) => {
  1052. let icmp_reply_repr = Icmpv6Repr::EchoReply { ident, seq_no, data };
  1053. Ok(self.icmpv6_reply(ipv6_repr, icmp_reply_repr))
  1054. },
  1055. _ => Err(Error::Unrecognized),
  1056. }
  1057. }
  1058. // Ignore any echo replies.
  1059. Icmpv6Repr::EchoReply { .. } => Ok(None),
  1060. // Forward any NDISC packets to the ndisc packet handler
  1061. Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr {
  1062. IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(timestamp, ipv6_repr, repr),
  1063. _ => Ok(None)
  1064. },
  1065. // Don't report an error if a packet with unknown type
  1066. // has been handled by an ICMP socket
  1067. #[cfg(feature = "socket-icmp")]
  1068. _ if handled_by_icmp_socket => Ok(None),
  1069. // FIXME: do something correct here?
  1070. _ => Err(Error::Unrecognized),
  1071. }
  1072. }
  1073. #[cfg(feature = "proto-ipv6")]
  1074. fn process_ndisc<'frame>(&mut self, timestamp: Instant, ip_repr: Ipv6Repr,
  1075. repr: NdiscRepr<'frame>) -> Result<Option<IpPacket<'frame>>> {
  1076. match repr {
  1077. NdiscRepr::NeighborAdvert { lladdr, target_addr, flags } => {
  1078. let ip_addr = ip_repr.src_addr.into();
  1079. match lladdr {
  1080. Some(lladdr) if lladdr.is_unicast() && target_addr.is_unicast() => {
  1081. if flags.contains(NdiscNeighborFlags::OVERRIDE) ||
  1082. !self.neighbor_cache.lookup(&ip_addr, timestamp).found() {
  1083. self.neighbor_cache.fill(ip_addr, lladdr, timestamp)
  1084. }
  1085. },
  1086. _ => (),
  1087. }
  1088. Ok(None)
  1089. }
  1090. NdiscRepr::NeighborSolicit { target_addr, lladdr, .. } => {
  1091. match lladdr {
  1092. Some(lladdr) if lladdr.is_unicast() && target_addr.is_unicast() => {
  1093. self.neighbor_cache.fill(ip_repr.src_addr.into(), lladdr, timestamp)
  1094. },
  1095. _ => (),
  1096. }
  1097. if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) {
  1098. let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  1099. flags: NdiscNeighborFlags::SOLICITED,
  1100. target_addr: target_addr,
  1101. lladdr: Some(self.ethernet_addr)
  1102. });
  1103. let ip_repr = Ipv6Repr {
  1104. src_addr: target_addr,
  1105. dst_addr: ip_repr.src_addr,
  1106. next_header: IpProtocol::Icmpv6,
  1107. hop_limit: 0xff,
  1108. payload_len: advert.buffer_len()
  1109. };
  1110. Ok(Some(IpPacket::Icmpv6((ip_repr, advert))))
  1111. } else {
  1112. Ok(None)
  1113. }
  1114. }
  1115. _ => Ok(None)
  1116. }
  1117. }
  1118. #[cfg(feature = "proto-ipv6")]
  1119. fn process_hopbyhop<'frame>(&mut self, sockets: &mut SocketSet, timestamp: Instant,
  1120. ipv6_repr: Ipv6Repr, handled_by_raw_socket: bool,
  1121. ip_payload: &'frame [u8]) -> Result<Option<IpPacket<'frame>>>
  1122. {
  1123. let hbh_pkt = Ipv6HopByHopHeader::new_checked(ip_payload)?;
  1124. let hbh_repr = Ipv6HopByHopRepr::parse(&hbh_pkt)?;
  1125. for result in hbh_repr.options() {
  1126. let opt_repr = result?;
  1127. match opt_repr {
  1128. Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (),
  1129. Ipv6OptionRepr::Unknown { type_, .. } => {
  1130. match Ipv6OptionFailureType::from(type_) {
  1131. Ipv6OptionFailureType::Skip => (),
  1132. Ipv6OptionFailureType::Discard => {
  1133. return Ok(None);
  1134. },
  1135. _ => {
  1136. // FIXME(dlrobertson): Send an ICMPv6 parameter problem message
  1137. // here.
  1138. return Err(Error::Unrecognized);
  1139. }
  1140. }
  1141. }
  1142. }
  1143. }
  1144. self.process_nxt_hdr(sockets, timestamp, ipv6_repr, hbh_repr.next_header,
  1145. handled_by_raw_socket, &ip_payload[hbh_repr.buffer_len()..])
  1146. }
  1147. #[cfg(feature = "proto-ipv4")]
  1148. fn process_icmpv4<'frame>(&self, _sockets: &mut SocketSet, ip_repr: IpRepr,
  1149. ip_payload: &'frame [u8]) -> Result<Option<IpPacket<'frame>>>
  1150. {
  1151. let icmp_packet = Icmpv4Packet::new_checked(ip_payload)?;
  1152. let checksum_caps = self.device_capabilities.checksum.clone();
  1153. let icmp_repr = Icmpv4Repr::parse(&icmp_packet, &checksum_caps)?;
  1154. #[cfg(feature = "socket-icmp")]
  1155. let mut handled_by_icmp_socket = false;
  1156. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  1157. for mut icmp_socket in _sockets.iter_mut().filter_map(IcmpSocket::downcast) {
  1158. if !icmp_socket.accepts(&ip_repr, &icmp_repr.into(), &checksum_caps) { continue }
  1159. match icmp_socket.process(&ip_repr, &icmp_repr.into(), &checksum_caps) {
  1160. // The packet is valid and handled by socket.
  1161. Ok(()) => handled_by_icmp_socket = true,
  1162. // The socket buffer is full.
  1163. Err(Error::Exhausted) => (),
  1164. // ICMP sockets don't validate the packets in any way.
  1165. Err(_) => unreachable!(),
  1166. }
  1167. }
  1168. match icmp_repr {
  1169. // Respond to echo requests.
  1170. #[cfg(feature = "proto-ipv4")]
  1171. Icmpv4Repr::EchoRequest { ident, seq_no, data } => {
  1172. let icmp_reply_repr = Icmpv4Repr::EchoReply { ident, seq_no, data };
  1173. match ip_repr {
  1174. IpRepr::Ipv4(ipv4_repr) => Ok(self.icmpv4_reply(ipv4_repr, icmp_reply_repr)),
  1175. _ => Err(Error::Unrecognized),
  1176. }
  1177. },
  1178. // Ignore any echo replies.
  1179. Icmpv4Repr::EchoReply { .. } => Ok(None),
  1180. // Don't report an error if a packet with unknown type
  1181. // has been handled by an ICMP socket
  1182. #[cfg(feature = "socket-icmp")]
  1183. _ if handled_by_icmp_socket => Ok(None),
  1184. // FIXME: do something correct here?
  1185. _ => Err(Error::Unrecognized),
  1186. }
  1187. }
  1188. #[cfg(feature = "proto-ipv4")]
  1189. fn icmpv4_reply<'frame, 'icmp: 'frame>
  1190. (&self, ipv4_repr: Ipv4Repr, icmp_repr: Icmpv4Repr<'icmp>) ->
  1191. Option<IpPacket<'frame>>
  1192. {
  1193. if !ipv4_repr.src_addr.is_unicast() {
  1194. // Do not send ICMP replies to non-unicast sources
  1195. None
  1196. } else if ipv4_repr.dst_addr.is_unicast() {
  1197. // Reply as normal when src_addr and dst_addr are both unicast
  1198. let ipv4_reply_repr = Ipv4Repr {
  1199. src_addr: ipv4_repr.dst_addr,
  1200. dst_addr: ipv4_repr.src_addr,
  1201. protocol: IpProtocol::Icmp,
  1202. payload_len: icmp_repr.buffer_len(),
  1203. hop_limit: 64
  1204. };
  1205. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  1206. } else if ipv4_repr.dst_addr.is_broadcast() {
  1207. // Only reply to broadcasts for echo replies and not other ICMP messages
  1208. match icmp_repr {
  1209. Icmpv4Repr::EchoReply {..} => match self.ipv4_address() {
  1210. Some(src_addr) => {
  1211. let ipv4_reply_repr = Ipv4Repr {
  1212. src_addr: src_addr,
  1213. dst_addr: ipv4_repr.src_addr,
  1214. protocol: IpProtocol::Icmp,
  1215. payload_len: icmp_repr.buffer_len(),
  1216. hop_limit: 64
  1217. };
  1218. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  1219. },
  1220. None => None,
  1221. },
  1222. _ => None,
  1223. }
  1224. } else {
  1225. None
  1226. }
  1227. }
  1228. #[cfg(feature = "proto-ipv6")]
  1229. fn icmpv6_reply<'frame, 'icmp: 'frame>
  1230. (&self, ipv6_repr: Ipv6Repr, icmp_repr: Icmpv6Repr<'icmp>) ->
  1231. Option<IpPacket<'frame>>
  1232. {
  1233. if ipv6_repr.dst_addr.is_unicast() {
  1234. let ipv6_reply_repr = Ipv6Repr {
  1235. src_addr: ipv6_repr.dst_addr,
  1236. dst_addr: ipv6_repr.src_addr,
  1237. next_header: IpProtocol::Icmpv6,
  1238. payload_len: icmp_repr.buffer_len(),
  1239. hop_limit: 64
  1240. };
  1241. Some(IpPacket::Icmpv6((ipv6_reply_repr, icmp_repr)))
  1242. } else {
  1243. // Do not send any ICMP replies to a broadcast destination address.
  1244. None
  1245. }
  1246. }
  1247. #[cfg(feature = "socket-udp")]
  1248. fn process_udp<'frame>(&self, sockets: &mut SocketSet,
  1249. ip_repr: IpRepr, handled_by_raw_socket: bool, ip_payload: &'frame [u8]) ->
  1250. Result<Option<IpPacket<'frame>>>
  1251. {
  1252. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  1253. let udp_packet = UdpPacket::new_checked(ip_payload)?;
  1254. let checksum_caps = self.device_capabilities.checksum.clone();
  1255. let udp_repr = UdpRepr::parse(&udp_packet, &src_addr, &dst_addr, &checksum_caps)?;
  1256. for mut udp_socket in sockets.iter_mut().filter_map(UdpSocket::downcast) {
  1257. if !udp_socket.accepts(&ip_repr, &udp_repr) { continue }
  1258. match udp_socket.process(&ip_repr, &udp_repr) {
  1259. // The packet is valid and handled by socket.
  1260. Ok(()) => return Ok(None),
  1261. // The packet is malformed, or the socket buffer is full.
  1262. Err(e) => return Err(e)
  1263. }
  1264. }
  1265. // The packet wasn't handled by a socket, send an ICMP port unreachable packet.
  1266. match ip_repr {
  1267. #[cfg(feature = "proto-ipv4")]
  1268. IpRepr::Ipv4(_) if handled_by_raw_socket =>
  1269. Ok(None),
  1270. #[cfg(feature = "proto-ipv6")]
  1271. IpRepr::Ipv6(_) if handled_by_raw_socket =>
  1272. Ok(None),
  1273. #[cfg(feature = "proto-ipv4")]
  1274. IpRepr::Ipv4(ipv4_repr) => {
  1275. let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU,
  1276. ipv4_repr.buffer_len());
  1277. let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable {
  1278. reason: Icmpv4DstUnreachable::PortUnreachable,
  1279. header: ipv4_repr,
  1280. data: &ip_payload[0..payload_len]
  1281. };
  1282. Ok(self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr))
  1283. },
  1284. #[cfg(feature = "proto-ipv6")]
  1285. IpRepr::Ipv6(ipv6_repr) => {
  1286. let payload_len = icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU,
  1287. ipv6_repr.buffer_len());
  1288. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  1289. reason: Icmpv6DstUnreachable::PortUnreachable,
  1290. header: ipv6_repr,
  1291. data: &ip_payload[0..payload_len]
  1292. };
  1293. Ok(self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr))
  1294. },
  1295. IpRepr::Unspecified { .. } => Err(Error::Unaddressable),
  1296. }
  1297. }
  1298. #[cfg(feature = "socket-tcp")]
  1299. fn process_tcp<'frame>(&self, sockets: &mut SocketSet, timestamp: Instant,
  1300. ip_repr: IpRepr, ip_payload: &'frame [u8]) ->
  1301. Result<Option<IpPacket<'frame>>>
  1302. {
  1303. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  1304. let tcp_packet = TcpPacket::new_checked(ip_payload)?;
  1305. let checksum_caps = self.device_capabilities.checksum.clone();
  1306. let tcp_repr = TcpRepr::parse(&tcp_packet, &src_addr, &dst_addr, &checksum_caps)?;
  1307. for mut tcp_socket in sockets.iter_mut().filter_map(TcpSocket::downcast) {
  1308. if !tcp_socket.accepts(&ip_repr, &tcp_repr) { continue }
  1309. match tcp_socket.process(timestamp, &ip_repr, &tcp_repr) {
  1310. // The packet is valid and handled by socket.
  1311. Ok(reply) => return Ok(reply.map(IpPacket::Tcp)),
  1312. // The packet is malformed, or doesn't match the socket state,
  1313. // or the socket buffer is full.
  1314. Err(e) => return Err(e)
  1315. }
  1316. }
  1317. if tcp_repr.control == TcpControl::Rst {
  1318. // Never reply to a TCP RST packet with another TCP RST packet.
  1319. Ok(None)
  1320. } else {
  1321. // The packet wasn't handled by a socket, send a TCP RST packet.
  1322. Ok(Some(IpPacket::Tcp(TcpSocket::rst_reply(&ip_repr, &tcp_repr))))
  1323. }
  1324. }
  1325. fn dispatch<Tx>(&mut self, tx_token: Tx, timestamp: Instant,
  1326. packet: EthernetPacket) -> Result<()>
  1327. where Tx: TxToken
  1328. {
  1329. match packet {
  1330. #[cfg(feature = "proto-ipv4")]
  1331. EthernetPacket::Arp(arp_repr) => {
  1332. let dst_hardware_addr =
  1333. match arp_repr {
  1334. ArpRepr::EthernetIpv4 { target_hardware_addr, .. } => target_hardware_addr,
  1335. };
  1336. self.dispatch_ethernet(tx_token, timestamp, arp_repr.buffer_len(), |mut frame| {
  1337. frame.set_dst_addr(dst_hardware_addr);
  1338. frame.set_ethertype(EthernetProtocol::Arp);
  1339. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  1340. arp_repr.emit(&mut packet);
  1341. })
  1342. },
  1343. EthernetPacket::Ip(packet) => {
  1344. self.dispatch_ip(tx_token, timestamp, packet)
  1345. },
  1346. }
  1347. }
  1348. fn dispatch_ethernet<Tx, F>(&mut self, tx_token: Tx, timestamp: Instant,
  1349. buffer_len: usize, f: F) -> Result<()>
  1350. where Tx: TxToken, F: FnOnce(EthernetFrame<&mut [u8]>)
  1351. {
  1352. let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len);
  1353. tx_token.consume(timestamp, tx_len, |tx_buffer| {
  1354. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  1355. let mut frame = EthernetFrame::new_unchecked(tx_buffer);
  1356. frame.set_src_addr(self.ethernet_addr);
  1357. f(frame);
  1358. Ok(())
  1359. })
  1360. }
  1361. fn in_same_network(&self, addr: &IpAddress) -> bool {
  1362. self.ip_addrs
  1363. .iter()
  1364. .any(|cidr| cidr.contains_addr(addr))
  1365. }
  1366. fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result<IpAddress> {
  1367. // Send directly.
  1368. if self.in_same_network(addr) || addr.is_broadcast() {
  1369. return Ok(*addr)
  1370. }
  1371. // Route via a router.
  1372. match self.routes.lookup(addr, timestamp) {
  1373. Some(router_addr) => Ok(router_addr),
  1374. None => Err(Error::Unaddressable),
  1375. }
  1376. }
  1377. fn has_neighbor(&self, addr: &IpAddress, timestamp: Instant) -> bool {
  1378. match self.route(addr, timestamp) {
  1379. Ok(routed_addr) => {
  1380. self.neighbor_cache
  1381. .lookup(&routed_addr, timestamp)
  1382. .found()
  1383. }
  1384. Err(_) => false
  1385. }
  1386. }
  1387. fn lookup_hardware_addr<Tx>(&mut self, tx_token: Tx, timestamp: Instant,
  1388. src_addr: &IpAddress, dst_addr: &IpAddress) ->
  1389. Result<(EthernetAddress, Tx)>
  1390. where Tx: TxToken
  1391. {
  1392. if dst_addr.is_multicast() {
  1393. let b = dst_addr.as_bytes();
  1394. let hardware_addr =
  1395. match *dst_addr {
  1396. IpAddress::Unspecified =>
  1397. None,
  1398. #[cfg(feature = "proto-ipv4")]
  1399. IpAddress::Ipv4(_addr) =>
  1400. Some(EthernetAddress::from_bytes(&[
  1401. 0x01, 0x00,
  1402. 0x5e, b[1] & 0x7F,
  1403. b[2], b[3],
  1404. ])),
  1405. #[cfg(feature = "proto-ipv6")]
  1406. IpAddress::Ipv6(_addr) =>
  1407. Some(EthernetAddress::from_bytes(&[
  1408. 0x33, 0x33,
  1409. b[12], b[13],
  1410. b[14], b[15],
  1411. ])),
  1412. };
  1413. if let Some(hardware_addr) = hardware_addr {
  1414. return Ok((hardware_addr, tx_token))
  1415. }
  1416. }
  1417. let dst_addr = self.route(dst_addr, timestamp)?;
  1418. match self.neighbor_cache.lookup(&dst_addr, timestamp) {
  1419. NeighborAnswer::Found(hardware_addr) =>
  1420. return Ok((hardware_addr, tx_token)),
  1421. NeighborAnswer::RateLimited =>
  1422. return Err(Error::Unaddressable),
  1423. NeighborAnswer::NotFound => (),
  1424. }
  1425. match (src_addr, dst_addr) {
  1426. #[cfg(feature = "proto-ipv4")]
  1427. (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => {
  1428. net_debug!("address {} not in neighbor cache, sending ARP request",
  1429. dst_addr);
  1430. let arp_repr = ArpRepr::EthernetIpv4 {
  1431. operation: ArpOperation::Request,
  1432. source_hardware_addr: self.ethernet_addr,
  1433. source_protocol_addr: src_addr,
  1434. target_hardware_addr: EthernetAddress::BROADCAST,
  1435. target_protocol_addr: dst_addr,
  1436. };
  1437. self.dispatch_ethernet(tx_token, timestamp, arp_repr.buffer_len(), |mut frame| {
  1438. frame.set_dst_addr(EthernetAddress::BROADCAST);
  1439. frame.set_ethertype(EthernetProtocol::Arp);
  1440. arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
  1441. })?;
  1442. }
  1443. #[cfg(feature = "proto-ipv6")]
  1444. (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
  1445. net_debug!("address {} not in neighbor cache, sending Neighbor Solicitation",
  1446. dst_addr);
  1447. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  1448. target_addr: src_addr,
  1449. lladdr: Some(self.ethernet_addr),
  1450. });
  1451. let packet = IpPacket::Icmpv6((
  1452. Ipv6Repr {
  1453. src_addr: src_addr,
  1454. dst_addr: dst_addr.solicited_node(),
  1455. next_header: IpProtocol::Icmpv6,
  1456. payload_len: solicit.buffer_len(),
  1457. hop_limit: 0xff
  1458. },
  1459. solicit,
  1460. ));
  1461. self.dispatch_ip(tx_token, timestamp, packet)?;
  1462. }
  1463. _ => ()
  1464. }
  1465. // The request got dispatched, limit the rate on the cache.
  1466. self.neighbor_cache.limit_rate(timestamp);
  1467. Err(Error::Unaddressable)
  1468. }
  1469. fn dispatch_ip<Tx: TxToken>(&mut self, tx_token: Tx, timestamp: Instant,
  1470. packet: IpPacket) -> Result<()> {
  1471. let ip_repr = packet.ip_repr().lower(&self.ip_addrs)?;
  1472. let caps = self.device_capabilities.clone();
  1473. let (dst_hardware_addr, tx_token) =
  1474. self.lookup_hardware_addr(tx_token, timestamp,
  1475. &ip_repr.src_addr(), &ip_repr.dst_addr())?;
  1476. self.dispatch_ethernet(tx_token, timestamp, ip_repr.total_len(), |mut frame| {
  1477. frame.set_dst_addr(dst_hardware_addr);
  1478. match ip_repr {
  1479. #[cfg(feature = "proto-ipv4")]
  1480. IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4),
  1481. #[cfg(feature = "proto-ipv6")]
  1482. IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6),
  1483. _ => return
  1484. }
  1485. ip_repr.emit(frame.payload_mut(), &caps.checksum);
  1486. let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..];
  1487. packet.emit_payload(ip_repr, payload, &caps);
  1488. })
  1489. }
  1490. #[cfg(feature = "proto-igmp")]
  1491. fn igmp_report_packet<'any>(&self, version: IgmpVersion, group_addr: Ipv4Address) -> Option<IpPacket<'any>> {
  1492. let iface_addr = self.ipv4_address()?;
  1493. let igmp_repr = IgmpRepr::MembershipReport {
  1494. group_addr,
  1495. version,
  1496. };
  1497. let pkt = IpPacket::Igmp((Ipv4Repr {
  1498. src_addr: iface_addr,
  1499. // Send to the group being reported
  1500. dst_addr: group_addr,
  1501. protocol: IpProtocol::Igmp,
  1502. payload_len: igmp_repr.buffer_len(),
  1503. hop_limit: 1,
  1504. // TODO: add Router Alert IPv4 header option. See
  1505. // [#183](https://github.com/m-labs/smoltcp/issues/183).
  1506. }, igmp_repr));
  1507. Some(pkt)
  1508. }
  1509. #[cfg(feature = "proto-igmp")]
  1510. fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<IpPacket<'any>> {
  1511. self.ipv4_address().map(|iface_addr| {
  1512. let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
  1513. IpPacket::Igmp((Ipv4Repr {
  1514. src_addr: iface_addr,
  1515. dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS,
  1516. protocol: IpProtocol::Igmp,
  1517. payload_len: igmp_repr.buffer_len(),
  1518. hop_limit: 1,
  1519. }, igmp_repr))
  1520. })
  1521. }
  1522. }
  1523. #[cfg(test)]
  1524. mod test {
  1525. #[cfg(feature = "proto-igmp")]
  1526. use std::vec::Vec;
  1527. use std::collections::BTreeMap;
  1528. use crate::{Result, Error};
  1529. use super::InterfaceBuilder;
  1530. use crate::iface::{NeighborCache, EthernetInterface};
  1531. use crate::phy::{self, Loopback, ChecksumCapabilities};
  1532. #[cfg(feature = "proto-igmp")]
  1533. use crate::phy::{Device, RxToken, TxToken};
  1534. use crate::time::Instant;
  1535. use crate::socket::SocketSet;
  1536. #[cfg(feature = "proto-ipv4")]
  1537. use crate::wire::{ArpOperation, ArpPacket, ArpRepr};
  1538. use crate::wire::{EthernetAddress, EthernetFrame, EthernetProtocol};
  1539. use crate::wire::{IpAddress, IpCidr, IpProtocol, IpRepr};
  1540. #[cfg(feature = "proto-ipv4")]
  1541. use crate::wire::{Ipv4Address, Ipv4Repr};
  1542. #[cfg(feature = "proto-igmp")]
  1543. use crate::wire::Ipv4Packet;
  1544. #[cfg(feature = "proto-ipv4")]
  1545. use crate::wire::{Icmpv4Repr, Icmpv4DstUnreachable};
  1546. #[cfg(feature = "proto-igmp")]
  1547. use crate::wire::{IgmpPacket, IgmpRepr, IgmpVersion};
  1548. #[cfg(all(feature = "socket-udp", any(feature = "proto-ipv4", feature = "proto-ipv6")))]
  1549. use crate::wire::{UdpPacket, UdpRepr};
  1550. #[cfg(feature = "proto-ipv6")]
  1551. use crate::wire::{Ipv6Address, Ipv6Repr};
  1552. #[cfg(feature = "proto-ipv6")]
  1553. use crate::wire::{Icmpv6Packet, Icmpv6Repr, Icmpv6ParamProblem};
  1554. #[cfg(feature = "proto-ipv6")]
  1555. use crate::wire::{NdiscNeighborFlags, NdiscRepr};
  1556. #[cfg(feature = "proto-ipv6")]
  1557. use crate::wire::{Ipv6HopByHopHeader, Ipv6Option, Ipv6OptionRepr};
  1558. use super::{EthernetPacket, IpPacket};
  1559. fn create_loopback<'a, 'b, 'c>() -> (EthernetInterface<'static, 'b, 'c, Loopback>,
  1560. SocketSet<'static, 'a>) {
  1561. // Create a basic device
  1562. let device = Loopback::new();
  1563. let ip_addrs = [
  1564. #[cfg(feature = "proto-ipv4")]
  1565. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  1566. #[cfg(feature = "proto-ipv6")]
  1567. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  1568. #[cfg(feature = "proto-ipv6")]
  1569. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  1570. ];
  1571. let iface_builder = InterfaceBuilder::new(device)
  1572. .ethernet_addr(EthernetAddress::default())
  1573. .neighbor_cache(NeighborCache::new(BTreeMap::new()))
  1574. .ip_addrs(ip_addrs);
  1575. #[cfg(feature = "proto-igmp")]
  1576. let iface_builder = iface_builder
  1577. .ipv4_multicast_groups(BTreeMap::new());
  1578. let iface = iface_builder
  1579. .finalize();
  1580. (iface, SocketSet::new(vec![]))
  1581. }
  1582. #[cfg(feature = "proto-igmp")]
  1583. fn recv_all<'b>(iface: &mut EthernetInterface<'static, 'b, 'static, Loopback>, timestamp: Instant) -> Vec<Vec<u8>> {
  1584. let mut pkts = Vec::new();
  1585. while let Some((rx, _tx)) = iface.device.receive() {
  1586. rx.consume(timestamp, |pkt| {
  1587. pkts.push(pkt.to_vec());
  1588. Ok(())
  1589. }).unwrap();
  1590. }
  1591. pkts
  1592. }
  1593. #[derive(Debug, PartialEq)]
  1594. struct MockTxToken;
  1595. impl phy::TxToken for MockTxToken {
  1596. fn consume<R, F>(self, _: Instant, _: usize, _: F) -> Result<R>
  1597. where F: FnOnce(&mut [u8]) -> Result<R> {
  1598. Err(Error::Unaddressable)
  1599. }
  1600. }
  1601. #[test]
  1602. #[should_panic(expected = "a required option was not set")]
  1603. fn test_builder_initialization_panic() {
  1604. InterfaceBuilder::new(Loopback::new()).finalize();
  1605. }
  1606. #[test]
  1607. fn test_no_icmp_no_unicast() {
  1608. let (mut iface, mut socket_set) = create_loopback();
  1609. let mut eth_bytes = vec![0u8; 54];
  1610. // Unknown Ipv4 Protocol
  1611. //
  1612. // Because the destination is the broadcast address
  1613. // this should not trigger and Destination Unreachable
  1614. // response. See RFC 1122 § 3.2.2.
  1615. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1616. let repr = IpRepr::Ipv4(Ipv4Repr {
  1617. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1618. dst_addr: Ipv4Address::BROADCAST,
  1619. protocol: IpProtocol::Unknown(0x0c),
  1620. payload_len: 0,
  1621. hop_limit: 0x40
  1622. });
  1623. #[cfg(feature = "proto-ipv6")]
  1624. let repr = IpRepr::Ipv6(Ipv6Repr {
  1625. src_addr: Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
  1626. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  1627. next_header: IpProtocol::Unknown(0x0c),
  1628. payload_len: 0,
  1629. hop_limit: 0x40
  1630. });
  1631. let frame = {
  1632. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  1633. frame.set_dst_addr(EthernetAddress::BROADCAST);
  1634. frame.set_src_addr(EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]));
  1635. frame.set_ethertype(EthernetProtocol::Ipv4);
  1636. repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  1637. EthernetFrame::new_unchecked(&*frame.into_inner())
  1638. };
  1639. // Ensure that the unknown protocol frame does not trigger an
  1640. // ICMP error response when the destination address is a
  1641. // broadcast address
  1642. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1643. assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
  1644. Ok(None));
  1645. #[cfg(feature = "proto-ipv6")]
  1646. assert_eq!(iface.inner.process_ipv6(&mut socket_set, Instant::from_millis(0), &frame),
  1647. Ok(None));
  1648. }
  1649. #[test]
  1650. #[cfg(feature = "proto-ipv4")]
  1651. fn test_icmp_error_no_payload() {
  1652. static NO_BYTES: [u8; 0] = [];
  1653. let (mut iface, mut socket_set) = create_loopback();
  1654. let mut eth_bytes = vec![0u8; 34];
  1655. // Unknown Ipv4 Protocol with no payload
  1656. let repr = IpRepr::Ipv4(Ipv4Repr {
  1657. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1658. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1659. protocol: IpProtocol::Unknown(0x0c),
  1660. payload_len: 0,
  1661. hop_limit: 0x40
  1662. });
  1663. // emit the above repr to a frame
  1664. let frame = {
  1665. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  1666. frame.set_dst_addr(EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]));
  1667. frame.set_src_addr(EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]));
  1668. frame.set_ethertype(EthernetProtocol::Ipv4);
  1669. repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  1670. EthernetFrame::new_unchecked(&*frame.into_inner())
  1671. };
  1672. // The expected Destination Unreachable response due to the
  1673. // unknown protocol
  1674. let icmp_repr = Icmpv4Repr::DstUnreachable {
  1675. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  1676. header: Ipv4Repr {
  1677. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1678. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1679. protocol: IpProtocol::Unknown(12),
  1680. payload_len: 0,
  1681. hop_limit: 64
  1682. },
  1683. data: &NO_BYTES
  1684. };
  1685. let expected_repr = IpPacket::Icmpv4((
  1686. Ipv4Repr {
  1687. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1688. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1689. protocol: IpProtocol::Icmp,
  1690. payload_len: icmp_repr.buffer_len(),
  1691. hop_limit: 64
  1692. },
  1693. icmp_repr
  1694. ));
  1695. // Ensure that the unknown protocol triggers an error response.
  1696. // And we correctly handle no payload.
  1697. assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
  1698. Ok(Some(expected_repr)));
  1699. }
  1700. #[test]
  1701. #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))]
  1702. fn test_icmp_error_port_unreachable() {
  1703. static UDP_PAYLOAD: [u8; 12] = [
  1704. 0x48, 0x65, 0x6c, 0x6c,
  1705. 0x6f, 0x2c, 0x20, 0x57,
  1706. 0x6f, 0x6c, 0x64, 0x21
  1707. ];
  1708. let (iface, mut socket_set) = create_loopback();
  1709. let mut udp_bytes_unicast = vec![0u8; 20];
  1710. let mut udp_bytes_broadcast = vec![0u8; 20];
  1711. let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast);
  1712. let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast);
  1713. let udp_repr = UdpRepr {
  1714. src_port: 67,
  1715. dst_port: 68,
  1716. payload: &UDP_PAYLOAD
  1717. };
  1718. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  1719. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1720. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1721. protocol: IpProtocol::Udp,
  1722. payload_len: udp_repr.buffer_len(),
  1723. hop_limit: 64
  1724. });
  1725. // Emit the representations to a packet
  1726. udp_repr.emit(&mut packet_unicast, &ip_repr.src_addr(),
  1727. &ip_repr.dst_addr(), &ChecksumCapabilities::default());
  1728. let data = packet_unicast.into_inner();
  1729. // The expected Destination Unreachable ICMPv4 error response due
  1730. // to no sockets listening on the destination port.
  1731. let icmp_repr = Icmpv4Repr::DstUnreachable {
  1732. reason: Icmpv4DstUnreachable::PortUnreachable,
  1733. header: Ipv4Repr {
  1734. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1735. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1736. protocol: IpProtocol::Udp,
  1737. payload_len: udp_repr.buffer_len(),
  1738. hop_limit: 64
  1739. },
  1740. data: &data
  1741. };
  1742. let expected_repr = IpPacket::Icmpv4((
  1743. Ipv4Repr {
  1744. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  1745. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1746. protocol: IpProtocol::Icmp,
  1747. payload_len: icmp_repr.buffer_len(),
  1748. hop_limit: 64
  1749. },
  1750. icmp_repr
  1751. ));
  1752. // Ensure that the unknown protocol triggers an error response.
  1753. // And we correctly handle no payload.
  1754. assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr, false, data),
  1755. Ok(Some(expected_repr)));
  1756. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  1757. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  1758. dst_addr: Ipv4Address::BROADCAST,
  1759. protocol: IpProtocol::Udp,
  1760. payload_len: udp_repr.buffer_len(),
  1761. hop_limit: 64
  1762. });
  1763. // Emit the representations to a packet
  1764. udp_repr.emit(&mut packet_broadcast, &ip_repr.src_addr(),
  1765. &IpAddress::Ipv4(Ipv4Address::BROADCAST),
  1766. &ChecksumCapabilities::default());
  1767. // Ensure that the port unreachable error does not trigger an
  1768. // ICMP error response when the destination address is a
  1769. // broadcast address and no socket is bound to the port.
  1770. assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr,
  1771. false, packet_broadcast.into_inner()), Ok(None));
  1772. }
  1773. #[test]
  1774. #[cfg(feature = "socket-udp")]
  1775. fn test_handle_udp_broadcast() {
  1776. use crate::socket::{UdpSocket, UdpSocketBuffer, UdpPacketMetadata};
  1777. use crate::wire::IpEndpoint;
  1778. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  1779. let (iface, mut socket_set) = create_loopback();
  1780. let rx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]);
  1781. let tx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]);
  1782. let udp_socket = UdpSocket::new(rx_buffer, tx_buffer);
  1783. let mut udp_bytes = vec![0u8; 13];
  1784. let mut packet = UdpPacket::new_unchecked(&mut udp_bytes);
  1785. let socket_handle = socket_set.add(udp_socket);
  1786. #[cfg(feature = "proto-ipv6")]
  1787. let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  1788. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  1789. let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02);
  1790. let udp_repr = UdpRepr {
  1791. src_port: 67,
  1792. dst_port: 68,
  1793. payload: &UDP_PAYLOAD
  1794. };
  1795. #[cfg(feature = "proto-ipv6")]
  1796. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  1797. src_addr: src_ip,
  1798. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  1799. next_header: IpProtocol::Udp,
  1800. payload_len: udp_repr.buffer_len(),
  1801. hop_limit: 0x40
  1802. });
  1803. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  1804. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  1805. src_addr: src_ip,
  1806. dst_addr: Ipv4Address::BROADCAST,
  1807. protocol: IpProtocol::Udp,
  1808. payload_len: udp_repr.buffer_len(),
  1809. hop_limit: 0x40
  1810. });
  1811. {
  1812. // Bind the socket to port 68
  1813. let mut socket = socket_set.get::<UdpSocket>(socket_handle);
  1814. assert_eq!(socket.bind(68), Ok(()));
  1815. assert!(!socket.can_recv());
  1816. assert!(socket.can_send());
  1817. }
  1818. udp_repr.emit(&mut packet, &ip_repr.src_addr(), &ip_repr.dst_addr(),
  1819. &ChecksumCapabilities::default());
  1820. // Packet should be handled by bound UDP socket
  1821. assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr, false, packet.into_inner()),
  1822. Ok(None));
  1823. {
  1824. // Make sure the payload to the UDP packet processed by process_udp is
  1825. // appended to the bound sockets rx_buffer
  1826. let mut socket = socket_set.get::<UdpSocket>(socket_handle);
  1827. assert!(socket.can_recv());
  1828. assert_eq!(socket.recv(), Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67))));
  1829. }
  1830. }
  1831. #[test]
  1832. #[cfg(feature = "proto-ipv4")]
  1833. fn test_handle_ipv4_broadcast() {
  1834. use crate::wire::{Ipv4Packet, Icmpv4Repr, Icmpv4Packet};
  1835. let (mut iface, mut socket_set) = create_loopback();
  1836. let our_ipv4_addr = iface.ipv4_address().unwrap();
  1837. let src_ipv4_addr = Ipv4Address([127, 0, 0, 2]);
  1838. // ICMPv4 echo request
  1839. let icmpv4_data: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
  1840. let icmpv4_repr = Icmpv4Repr::EchoRequest {
  1841. ident: 0x1234, seq_no: 0xabcd, data: &icmpv4_data
  1842. };
  1843. // Send to IPv4 broadcast address
  1844. let ipv4_repr = Ipv4Repr {
  1845. src_addr: src_ipv4_addr,
  1846. dst_addr: Ipv4Address::BROADCAST,
  1847. protocol: IpProtocol::Icmp,
  1848. hop_limit: 64,
  1849. payload_len: icmpv4_repr.buffer_len(),
  1850. };
  1851. // Emit to ethernet frame
  1852. let mut eth_bytes = vec![0u8;
  1853. EthernetFrame::<&[u8]>::header_len() +
  1854. ipv4_repr.buffer_len() + icmpv4_repr.buffer_len()
  1855. ];
  1856. let frame = {
  1857. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  1858. ipv4_repr.emit(
  1859. &mut Ipv4Packet::new_unchecked(frame.payload_mut()),
  1860. &ChecksumCapabilities::default());
  1861. icmpv4_repr.emit(
  1862. &mut Icmpv4Packet::new_unchecked(
  1863. &mut frame.payload_mut()[ipv4_repr.buffer_len()..]),
  1864. &ChecksumCapabilities::default());
  1865. EthernetFrame::new_unchecked(&*frame.into_inner())
  1866. };
  1867. // Expected ICMPv4 echo reply
  1868. let expected_icmpv4_repr = Icmpv4Repr::EchoReply {
  1869. ident: 0x1234, seq_no: 0xabcd, data: &icmpv4_data };
  1870. let expected_ipv4_repr = Ipv4Repr {
  1871. src_addr: our_ipv4_addr,
  1872. dst_addr: src_ipv4_addr,
  1873. protocol: IpProtocol::Icmp,
  1874. hop_limit: 64,
  1875. payload_len: expected_icmpv4_repr.buffer_len(),
  1876. };
  1877. let expected_packet = IpPacket::Icmpv4((expected_ipv4_repr, expected_icmpv4_repr));
  1878. assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
  1879. Ok(Some(expected_packet)));
  1880. }
  1881. #[test]
  1882. #[cfg(feature = "socket-udp")]
  1883. fn test_icmp_reply_size() {
  1884. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1885. use crate::wire::IPV4_MIN_MTU as MIN_MTU;
  1886. #[cfg(feature = "proto-ipv6")]
  1887. use crate::wire::Icmpv6DstUnreachable;
  1888. #[cfg(feature = "proto-ipv6")]
  1889. use crate::wire::IPV6_MIN_MTU as MIN_MTU;
  1890. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1891. const MAX_PAYLOAD_LEN: usize = 528;
  1892. #[cfg(feature = "proto-ipv6")]
  1893. const MAX_PAYLOAD_LEN: usize = 1192;
  1894. let (iface, mut socket_set) = create_loopback();
  1895. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1896. let src_addr = Ipv4Address([192, 168, 1, 1]);
  1897. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1898. let dst_addr = Ipv4Address([192, 168, 1, 2]);
  1899. #[cfg(feature = "proto-ipv6")]
  1900. let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  1901. #[cfg(feature = "proto-ipv6")]
  1902. let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2);
  1903. // UDP packet that if not tructated will cause a icmp port unreachable reply
  1904. // to exeed the minimum mtu bytes in length.
  1905. let udp_repr = UdpRepr {
  1906. src_port: 67,
  1907. dst_port: 68,
  1908. payload: &[0x2a; MAX_PAYLOAD_LEN]
  1909. };
  1910. let mut bytes = vec![0xff; udp_repr.buffer_len()];
  1911. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  1912. udp_repr.emit(&mut packet, &src_addr.into(), &dst_addr.into(), &ChecksumCapabilities::default());
  1913. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1914. let ip_repr = Ipv4Repr {
  1915. src_addr: src_addr,
  1916. dst_addr: dst_addr,
  1917. protocol: IpProtocol::Udp,
  1918. hop_limit: 64,
  1919. payload_len: udp_repr.buffer_len()
  1920. };
  1921. #[cfg(feature = "proto-ipv6")]
  1922. let ip_repr = Ipv6Repr {
  1923. src_addr: src_addr,
  1924. dst_addr: dst_addr,
  1925. next_header: IpProtocol::Udp,
  1926. hop_limit: 64,
  1927. payload_len: udp_repr.buffer_len()
  1928. };
  1929. let payload = packet.into_inner();
  1930. // Expected packets
  1931. #[cfg(feature = "proto-ipv6")]
  1932. let expected_icmp_repr = Icmpv6Repr::DstUnreachable {
  1933. reason: Icmpv6DstUnreachable::PortUnreachable,
  1934. header: ip_repr,
  1935. data: &payload[..MAX_PAYLOAD_LEN]
  1936. };
  1937. #[cfg(feature = "proto-ipv6")]
  1938. let expected_ip_repr = Ipv6Repr {
  1939. src_addr: dst_addr,
  1940. dst_addr: src_addr,
  1941. next_header: IpProtocol::Icmpv6,
  1942. hop_limit: 64,
  1943. payload_len: expected_icmp_repr.buffer_len()
  1944. };
  1945. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1946. let expected_icmp_repr = Icmpv4Repr::DstUnreachable {
  1947. reason: Icmpv4DstUnreachable::PortUnreachable,
  1948. header: ip_repr,
  1949. data: &payload[..MAX_PAYLOAD_LEN]
  1950. };
  1951. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1952. let expected_ip_repr = Ipv4Repr {
  1953. src_addr: dst_addr,
  1954. dst_addr: src_addr,
  1955. protocol: IpProtocol::Icmp,
  1956. hop_limit: 64,
  1957. payload_len: expected_icmp_repr.buffer_len()
  1958. };
  1959. // The expected packet does not exceed the IPV4_MIN_MTU
  1960. assert_eq!(expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(), MIN_MTU);
  1961. // The expected packet and the generated packet are equal
  1962. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  1963. assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr.into(), false, payload),
  1964. Ok(Some(IpPacket::Icmpv4((expected_ip_repr, expected_icmp_repr)))));
  1965. #[cfg(feature = "proto-ipv6")]
  1966. assert_eq!(iface.inner.process_udp(&mut socket_set, ip_repr.into(), false, payload),
  1967. Ok(Some(IpPacket::Icmpv6((expected_ip_repr, expected_icmp_repr)))));
  1968. }
  1969. #[test]
  1970. #[cfg(feature = "proto-ipv4")]
  1971. fn test_handle_valid_arp_request() {
  1972. let (mut iface, mut socket_set) = create_loopback();
  1973. let mut eth_bytes = vec![0u8; 42];
  1974. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  1975. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  1976. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  1977. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  1978. let repr = ArpRepr::EthernetIpv4 {
  1979. operation: ArpOperation::Request,
  1980. source_hardware_addr: remote_hw_addr,
  1981. source_protocol_addr: remote_ip_addr,
  1982. target_hardware_addr: EthernetAddress::default(),
  1983. target_protocol_addr: local_ip_addr,
  1984. };
  1985. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  1986. frame.set_dst_addr(EthernetAddress::BROADCAST);
  1987. frame.set_src_addr(remote_hw_addr);
  1988. frame.set_ethertype(EthernetProtocol::Arp);
  1989. {
  1990. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  1991. repr.emit(&mut packet);
  1992. }
  1993. // Ensure an ARP Request for us triggers an ARP Reply
  1994. assert_eq!(iface.inner.process_ethernet(&mut socket_set, Instant::from_millis(0), frame.into_inner()),
  1995. Ok(Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  1996. operation: ArpOperation::Reply,
  1997. source_hardware_addr: local_hw_addr,
  1998. source_protocol_addr: local_ip_addr,
  1999. target_hardware_addr: remote_hw_addr,
  2000. target_protocol_addr: remote_ip_addr
  2001. }))));
  2002. // Ensure the address of the requestor was entered in the cache
  2003. assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
  2004. &IpAddress::Ipv4(local_ip_addr), &IpAddress::Ipv4(remote_ip_addr)),
  2005. Ok((remote_hw_addr, MockTxToken)));
  2006. }
  2007. #[test]
  2008. #[cfg(feature = "proto-ipv6")]
  2009. fn test_handle_valid_ndisc_request() {
  2010. let (mut iface, mut socket_set) = create_loopback();
  2011. let mut eth_bytes = vec![0u8; 86];
  2012. let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1);
  2013. let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2);
  2014. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  2015. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  2016. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  2017. target_addr: local_ip_addr,
  2018. lladdr: Some(remote_hw_addr),
  2019. });
  2020. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  2021. src_addr: remote_ip_addr,
  2022. dst_addr: local_ip_addr.solicited_node(),
  2023. next_header: IpProtocol::Icmpv6,
  2024. hop_limit: 0xff,
  2025. payload_len: solicit.buffer_len()
  2026. });
  2027. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  2028. frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00]));
  2029. frame.set_src_addr(remote_hw_addr);
  2030. frame.set_ethertype(EthernetProtocol::Ipv6);
  2031. {
  2032. ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  2033. solicit.emit(&remote_ip_addr.into(), &local_ip_addr.solicited_node().into(),
  2034. &mut Icmpv6Packet::new_unchecked(
  2035. &mut frame.payload_mut()[ip_repr.buffer_len()..]),
  2036. &ChecksumCapabilities::default());
  2037. }
  2038. let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  2039. flags: NdiscNeighborFlags::SOLICITED,
  2040. target_addr: local_ip_addr,
  2041. lladdr: Some(local_hw_addr)
  2042. });
  2043. let ipv6_expected = Ipv6Repr {
  2044. src_addr: local_ip_addr,
  2045. dst_addr: remote_ip_addr,
  2046. next_header: IpProtocol::Icmpv6,
  2047. hop_limit: 0xff,
  2048. payload_len: icmpv6_expected.buffer_len()
  2049. };
  2050. // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement
  2051. assert_eq!(iface.inner.process_ethernet(&mut socket_set, Instant::from_millis(0), frame.into_inner()),
  2052. Ok(Some(EthernetPacket::Ip(IpPacket::Icmpv6((ipv6_expected, icmpv6_expected))))));
  2053. // Ensure the address of the requestor was entered in the cache
  2054. assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
  2055. &IpAddress::Ipv6(local_ip_addr), &IpAddress::Ipv6(remote_ip_addr)),
  2056. Ok((remote_hw_addr, MockTxToken)));
  2057. }
  2058. #[test]
  2059. #[cfg(feature = "proto-ipv4")]
  2060. fn test_handle_other_arp_request() {
  2061. let (mut iface, mut socket_set) = create_loopback();
  2062. let mut eth_bytes = vec![0u8; 42];
  2063. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  2064. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  2065. let repr = ArpRepr::EthernetIpv4 {
  2066. operation: ArpOperation::Request,
  2067. source_hardware_addr: remote_hw_addr,
  2068. source_protocol_addr: remote_ip_addr,
  2069. target_hardware_addr: EthernetAddress::default(),
  2070. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]),
  2071. };
  2072. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  2073. frame.set_dst_addr(EthernetAddress::BROADCAST);
  2074. frame.set_src_addr(remote_hw_addr);
  2075. frame.set_ethertype(EthernetProtocol::Arp);
  2076. {
  2077. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  2078. repr.emit(&mut packet);
  2079. }
  2080. // Ensure an ARP Request for someone else does not trigger an ARP Reply
  2081. assert_eq!(iface.inner.process_ethernet(&mut socket_set, Instant::from_millis(0), frame.into_inner()),
  2082. Ok(None));
  2083. // Ensure the address of the requestor was entered in the cache
  2084. assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
  2085. &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])),
  2086. &IpAddress::Ipv4(remote_ip_addr)),
  2087. Ok((remote_hw_addr, MockTxToken)));
  2088. }
  2089. #[test]
  2090. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  2091. fn test_icmpv4_socket() {
  2092. use crate::socket::{IcmpSocket, IcmpEndpoint, IcmpSocketBuffer, IcmpPacketMetadata};
  2093. use crate::wire::Icmpv4Packet;
  2094. let (iface, mut socket_set) = create_loopback();
  2095. let rx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 24]);
  2096. let tx_buffer = IcmpSocketBuffer::new(vec![IcmpPacketMetadata::EMPTY], vec![0; 24]);
  2097. let icmpv4_socket = IcmpSocket::new(rx_buffer, tx_buffer);
  2098. let socket_handle = socket_set.add(icmpv4_socket);
  2099. let ident = 0x1234;
  2100. let seq_no = 0x5432;
  2101. let echo_data = &[0xff; 16];
  2102. {
  2103. let mut socket = socket_set.get::<IcmpSocket>(socket_handle);
  2104. // Bind to the ID 0x1234
  2105. assert_eq!(socket.bind(IcmpEndpoint::Ident(ident)), Ok(()));
  2106. }
  2107. // Ensure the ident we bound to and the ident of the packet are the same.
  2108. let mut bytes = [0xff; 24];
  2109. let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
  2110. let echo_repr = Icmpv4Repr::EchoRequest{ ident, seq_no, data: echo_data };
  2111. echo_repr.emit(&mut packet, &ChecksumCapabilities::default());
  2112. let icmp_data = &packet.into_inner()[..];
  2113. let ipv4_repr = Ipv4Repr {
  2114. src_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x02),
  2115. dst_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x01),
  2116. protocol: IpProtocol::Icmp,
  2117. payload_len: 24,
  2118. hop_limit: 64
  2119. };
  2120. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  2121. // Open a socket and ensure the packet is handled due to the listening
  2122. // socket.
  2123. {
  2124. assert!(!socket_set.get::<IcmpSocket>(socket_handle).can_recv());
  2125. }
  2126. // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening
  2127. let echo_reply = Icmpv4Repr::EchoReply{ ident, seq_no, data: echo_data };
  2128. let ipv4_reply = Ipv4Repr {
  2129. src_addr: ipv4_repr.dst_addr,
  2130. dst_addr: ipv4_repr.src_addr,
  2131. ..ipv4_repr
  2132. };
  2133. assert_eq!(iface.inner.process_icmpv4(&mut socket_set, ip_repr, icmp_data),
  2134. Ok(Some(IpPacket::Icmpv4((ipv4_reply, echo_reply)))));
  2135. {
  2136. let mut socket = socket_set.get::<IcmpSocket>(socket_handle);
  2137. assert!(socket.can_recv());
  2138. assert_eq!(socket.recv(),
  2139. Ok((&icmp_data[..],
  2140. IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02)))));
  2141. }
  2142. }
  2143. #[test]
  2144. #[cfg(feature = "proto-ipv6")]
  2145. fn test_solicited_node_addrs() {
  2146. let (mut iface, _) = create_loopback();
  2147. let mut new_addrs = vec![IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64),
  2148. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64)];
  2149. iface.update_ip_addrs(|addrs| {
  2150. new_addrs.extend(addrs.to_vec());
  2151. *addrs = From::from(new_addrs);
  2152. });
  2153. assert!(iface.inner.has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002)));
  2154. assert!(iface.inner.has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff)));
  2155. assert!(!iface.inner.has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003)));
  2156. }
  2157. #[test]
  2158. #[cfg(feature = "proto-ipv6")]
  2159. fn test_icmpv6_nxthdr_unknown() {
  2160. let (mut iface, mut socket_set) = create_loopback();
  2161. let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  2162. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x01]);
  2163. let mut eth_bytes = vec![0; 66];
  2164. let payload = [0x12, 0x34, 0x56, 0x78];
  2165. let ipv6_repr = Ipv6Repr {
  2166. src_addr: remote_ip_addr,
  2167. dst_addr: Ipv6Address::LOOPBACK,
  2168. next_header: IpProtocol::HopByHop,
  2169. payload_len: 12,
  2170. hop_limit: 0x40,
  2171. };
  2172. let frame = {
  2173. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  2174. let ip_repr = IpRepr::Ipv6(ipv6_repr);
  2175. frame.set_dst_addr(EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]));
  2176. frame.set_src_addr(remote_hw_addr);
  2177. frame.set_ethertype(EthernetProtocol::Ipv6);
  2178. ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  2179. let mut offset = ipv6_repr.buffer_len();
  2180. {
  2181. let mut hbh_pkt =
  2182. Ipv6HopByHopHeader::new_unchecked(&mut frame.payload_mut()[offset..]);
  2183. hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c));
  2184. hbh_pkt.set_header_len(0);
  2185. offset += 8;
  2186. {
  2187. let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[..]);
  2188. Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt);
  2189. }
  2190. {
  2191. let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]);
  2192. Ipv6OptionRepr::Pad1.emit(&mut pad_pkt);
  2193. }
  2194. }
  2195. frame.payload_mut()[offset..].copy_from_slice(&payload);
  2196. EthernetFrame::new_unchecked(&*frame.into_inner())
  2197. };
  2198. let reply_icmp_repr = Icmpv6Repr::ParamProblem {
  2199. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  2200. pointer: 40,
  2201. header: ipv6_repr,
  2202. data: &payload[..]
  2203. };
  2204. let reply_ipv6_repr = Ipv6Repr {
  2205. src_addr: Ipv6Address::LOOPBACK,
  2206. dst_addr: remote_ip_addr,
  2207. next_header: IpProtocol::Icmpv6,
  2208. payload_len: reply_icmp_repr.buffer_len(),
  2209. hop_limit: 0x40,
  2210. };
  2211. // Ensure the unknown next header causes a ICMPv6 Parameter Problem
  2212. // error message to be sent to the sender.
  2213. assert_eq!(iface.inner.process_ipv6(&mut socket_set, Instant::from_millis(0), &frame),
  2214. Ok(Some(IpPacket::Icmpv6((reply_ipv6_repr, reply_icmp_repr)))));
  2215. // Ensure the address of the requestor was entered in the cache
  2216. assert_eq!(iface.inner.lookup_hardware_addr(MockTxToken, Instant::from_secs(0),
  2217. &IpAddress::Ipv6(Ipv6Address::LOOPBACK),
  2218. &IpAddress::Ipv6(remote_ip_addr)),
  2219. Ok((remote_hw_addr, MockTxToken)));
  2220. }
  2221. #[test]
  2222. #[cfg(feature = "proto-igmp")]
  2223. fn test_handle_igmp() {
  2224. fn recv_igmp<'b>(mut iface: &mut EthernetInterface<'static, 'b, 'static, Loopback>, timestamp: Instant) -> Vec<(Ipv4Repr, IgmpRepr)> {
  2225. let checksum_caps = &iface.device.capabilities().checksum;
  2226. recv_all(&mut iface, timestamp)
  2227. .iter()
  2228. .filter_map(|frame| {
  2229. let eth_frame = EthernetFrame::new_checked(frame).ok()?;
  2230. let ipv4_packet = Ipv4Packet::new_checked(eth_frame.payload()).ok()?;
  2231. let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, &checksum_caps).ok()?;
  2232. let ip_payload = ipv4_packet.payload();
  2233. let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?;
  2234. let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?;
  2235. Some((ipv4_repr, igmp_repr))
  2236. })
  2237. .collect::<Vec<_>>()
  2238. }
  2239. let groups = [
  2240. Ipv4Address::new(224, 0, 0, 22),
  2241. Ipv4Address::new(224, 0, 0, 56),
  2242. ];
  2243. let (mut iface, mut socket_set) = create_loopback();
  2244. // Join multicast groups
  2245. let timestamp = Instant::now();
  2246. for group in &groups {
  2247. iface.join_multicast_group(*group, timestamp)
  2248. .unwrap();
  2249. }
  2250. let reports = recv_igmp(&mut iface, timestamp);
  2251. assert_eq!(reports.len(), 2);
  2252. for (i, group_addr) in groups.iter().enumerate() {
  2253. assert_eq!(reports[i].0.protocol, IpProtocol::Igmp);
  2254. assert_eq!(reports[i].0.dst_addr, *group_addr);
  2255. assert_eq!(reports[i].1, IgmpRepr::MembershipReport {
  2256. group_addr: *group_addr,
  2257. version: IgmpVersion::Version2,
  2258. });
  2259. }
  2260. // General query
  2261. let timestamp = Instant::now();
  2262. const GENERAL_QUERY_BYTES: &[u8] = &[
  2263. 0x01, 0x00, 0x5e, 0x00, 0x00, 0x01, 0x0a, 0x14,
  2264. 0x48, 0x01, 0x21, 0x01, 0x08, 0x00, 0x46, 0xc0,
  2265. 0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02,
  2266. 0x47, 0x43, 0xac, 0x16, 0x63, 0x04, 0xe0, 0x00,
  2267. 0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64,
  2268. 0xec, 0x8f, 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c,
  2269. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  2270. 0x00, 0x00, 0x00, 0x00
  2271. ];
  2272. {
  2273. // Transmit GENERAL_QUERY_BYTES into loopback
  2274. let tx_token = iface.device.transmit().unwrap();
  2275. tx_token.consume(
  2276. timestamp, GENERAL_QUERY_BYTES.len(),
  2277. |buffer| {
  2278. buffer.copy_from_slice(GENERAL_QUERY_BYTES);
  2279. Ok(())
  2280. }).unwrap();
  2281. }
  2282. // Trigger processing until all packets received through the
  2283. // loopback have been processed, including responses to
  2284. // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0
  2285. // pkts that could be checked.
  2286. iface.socket_ingress(&mut socket_set, timestamp).unwrap();
  2287. // Leave multicast groups
  2288. let timestamp = Instant::now();
  2289. for group in &groups {
  2290. iface.leave_multicast_group(*group, timestamp)
  2291. .unwrap();
  2292. }
  2293. let leaves = recv_igmp(&mut iface, timestamp);
  2294. assert_eq!(leaves.len(), 2);
  2295. for (i, group_addr) in groups.iter().cloned().enumerate() {
  2296. assert_eq!(leaves[i].0.protocol, IpProtocol::Igmp);
  2297. assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS);
  2298. assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr });
  2299. }
  2300. }
  2301. #[test]
  2302. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))]
  2303. fn test_raw_socket_no_reply() {
  2304. use crate::socket::{RawSocket, RawSocketBuffer, RawPacketMetadata};
  2305. use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  2306. let (mut iface, mut socket_set) = create_loopback();
  2307. let packets = 1;
  2308. let rx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  2309. let tx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * packets]);
  2310. let raw_socket = RawSocket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer);
  2311. socket_set.add(raw_socket);
  2312. let src_addr = Ipv4Address([127, 0, 0, 2]);
  2313. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  2314. let udp_repr = UdpRepr {
  2315. src_port: 67,
  2316. dst_port: 68,
  2317. payload: &[0x2a; 10]
  2318. };
  2319. let mut bytes = vec![0xff; udp_repr.buffer_len()];
  2320. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  2321. udp_repr.emit(&mut packet, &src_addr.into(), &dst_addr.into(), &ChecksumCapabilities::default());
  2322. let ipv4_repr = Ipv4Repr {
  2323. src_addr: src_addr,
  2324. dst_addr: dst_addr,
  2325. protocol: IpProtocol::Udp,
  2326. hop_limit: 64,
  2327. payload_len: udp_repr.buffer_len()
  2328. };
  2329. // Emit to ethernet frame
  2330. let mut eth_bytes = vec![0u8;
  2331. EthernetFrame::<&[u8]>::header_len() +
  2332. ipv4_repr.buffer_len() + udp_repr.buffer_len()
  2333. ];
  2334. let frame = {
  2335. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  2336. ipv4_repr.emit(
  2337. &mut Ipv4Packet::new_unchecked(frame.payload_mut()),
  2338. &ChecksumCapabilities::default());
  2339. udp_repr.emit(
  2340. &mut UdpPacket::new_unchecked(
  2341. &mut frame.payload_mut()[ipv4_repr.buffer_len()..]),
  2342. &src_addr.into(),
  2343. &dst_addr.into(),
  2344. &ChecksumCapabilities::default());
  2345. EthernetFrame::new_unchecked(&*frame.into_inner())
  2346. };
  2347. assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
  2348. Ok(None));
  2349. }
  2350. #[test]
  2351. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))]
  2352. fn test_raw_socket_truncated_packet() {
  2353. use crate::socket::{RawSocket, RawSocketBuffer, RawPacketMetadata};
  2354. use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  2355. let (mut iface, mut socket_set) = create_loopback();
  2356. let packets = 1;
  2357. let rx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  2358. let tx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * packets]);
  2359. let raw_socket = RawSocket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer);
  2360. socket_set.add(raw_socket);
  2361. let src_addr = Ipv4Address([127, 0, 0, 2]);
  2362. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  2363. let udp_repr = UdpRepr {
  2364. src_port: 67,
  2365. dst_port: 68,
  2366. payload: &[0x2a; 49] // 49 > 48, hence packet will be truncated
  2367. };
  2368. let mut bytes = vec![0xff; udp_repr.buffer_len()];
  2369. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  2370. udp_repr.emit(&mut packet, &src_addr.into(), &dst_addr.into(), &ChecksumCapabilities::default());
  2371. let ipv4_repr = Ipv4Repr {
  2372. src_addr: src_addr,
  2373. dst_addr: dst_addr,
  2374. protocol: IpProtocol::Udp,
  2375. hop_limit: 64,
  2376. payload_len: udp_repr.buffer_len()
  2377. };
  2378. // Emit to ethernet frame
  2379. let mut eth_bytes = vec![0u8;
  2380. EthernetFrame::<&[u8]>::header_len() +
  2381. ipv4_repr.buffer_len() + udp_repr.buffer_len()
  2382. ];
  2383. let frame = {
  2384. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  2385. ipv4_repr.emit(
  2386. &mut Ipv4Packet::new_unchecked(frame.payload_mut()),
  2387. &ChecksumCapabilities::default());
  2388. udp_repr.emit(
  2389. &mut UdpPacket::new_unchecked(
  2390. &mut frame.payload_mut()[ipv4_repr.buffer_len()..]),
  2391. &src_addr.into(),
  2392. &dst_addr.into(),
  2393. &ChecksumCapabilities::default());
  2394. EthernetFrame::new_unchecked(&*frame.into_inner())
  2395. };
  2396. let frame = iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame);
  2397. // because the packet could not be handled we should send an Icmp message
  2398. assert!(match frame {
  2399. Ok(Some(IpPacket::Icmpv4(_))) => true,
  2400. _ => false,
  2401. });
  2402. }
  2403. #[test]
  2404. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw", feature = "socket-udp"))]
  2405. fn test_raw_socket_with_udp_socket() {
  2406. use crate::socket::{UdpSocket, UdpSocketBuffer, UdpPacketMetadata,
  2407. RawSocket, RawSocketBuffer, RawPacketMetadata};
  2408. use crate::wire::{IpVersion, IpEndpoint, Ipv4Packet, UdpPacket, UdpRepr};
  2409. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  2410. let (mut iface, mut socket_set) = create_loopback();
  2411. let udp_rx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]);
  2412. let udp_tx_buffer = UdpSocketBuffer::new(vec![UdpPacketMetadata::EMPTY], vec![0; 15]);
  2413. let udp_socket = UdpSocket::new(udp_rx_buffer, udp_tx_buffer);
  2414. let udp_socket_handle = socket_set.add(udp_socket);
  2415. {
  2416. // Bind the socket to port 68
  2417. let mut socket = socket_set.get::<UdpSocket>(udp_socket_handle);
  2418. assert_eq!(socket.bind(68), Ok(()));
  2419. assert!(!socket.can_recv());
  2420. assert!(socket.can_send());
  2421. }
  2422. let packets = 1;
  2423. let raw_rx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  2424. let raw_tx_buffer = RawSocketBuffer::new(vec![RawPacketMetadata::EMPTY; packets], vec![0; 48 * packets]);
  2425. let raw_socket = RawSocket::new(IpVersion::Ipv4, IpProtocol::Udp, raw_rx_buffer, raw_tx_buffer);
  2426. socket_set.add(raw_socket);
  2427. let src_addr = Ipv4Address([127, 0, 0, 2]);
  2428. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  2429. let udp_repr = UdpRepr {
  2430. src_port: 67,
  2431. dst_port: 68,
  2432. payload: &UDP_PAYLOAD
  2433. };
  2434. let mut bytes = vec![0xff; udp_repr.buffer_len()];
  2435. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  2436. udp_repr.emit(&mut packet, &src_addr.into(), &dst_addr.into(), &ChecksumCapabilities::default());
  2437. let ipv4_repr = Ipv4Repr {
  2438. src_addr: src_addr,
  2439. dst_addr: dst_addr,
  2440. protocol: IpProtocol::Udp,
  2441. hop_limit: 64,
  2442. payload_len: udp_repr.buffer_len()
  2443. };
  2444. // Emit to ethernet frame
  2445. let mut eth_bytes = vec![0u8;
  2446. EthernetFrame::<&[u8]>::header_len() +
  2447. ipv4_repr.buffer_len() + udp_repr.buffer_len()
  2448. ];
  2449. let frame = {
  2450. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  2451. ipv4_repr.emit(
  2452. &mut Ipv4Packet::new_unchecked(frame.payload_mut()),
  2453. &ChecksumCapabilities::default());
  2454. udp_repr.emit(
  2455. &mut UdpPacket::new_unchecked(
  2456. &mut frame.payload_mut()[ipv4_repr.buffer_len()..]),
  2457. &src_addr.into(),
  2458. &dst_addr.into(),
  2459. &ChecksumCapabilities::default());
  2460. EthernetFrame::new_unchecked(&*frame.into_inner())
  2461. };
  2462. assert_eq!(iface.inner.process_ipv4(&mut socket_set, Instant::from_millis(0), &frame),
  2463. Ok(None));
  2464. {
  2465. // Make sure the UDP socket can still receive in presence of a Raw socket that handles UDP
  2466. let mut socket = socket_set.get::<UdpSocket>(udp_socket_handle);
  2467. assert!(socket.can_recv());
  2468. assert_eq!(socket.recv(), Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_addr.into(), 67))));
  2469. }
  2470. }
  2471. }