rank.rs 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. //! Implementation of the Rank comparison in RPL.
  2. //!
  3. //! A Rank can be thought of as a fixed-point number, where the position of the radix point between
  4. //! the integer part and the fractional part is determined by `MinHopRankIncrease`.
  5. //! `MinHopRankIncrease` is the minimum increase in Rank between a node and any of its DODAG
  6. //! parents.
  7. //! This value is provisined by the DODAG root.
  8. //!
  9. //! When Rank is compared, the integer portion of the Rank is to be used.
  10. //!
  11. //! Meaning of the comparison:
  12. //! - **Rank M is less than Rank N**: the position of M is closer to the DODAG root than the position
  13. //! of N. Node M may safely be a DODAG parent for node N.
  14. //! - **Ranks are equal**: the positions of both nodes within the DODAG and with respect to the DODAG
  15. //! are similar or identical. Routing through a node with equal Rank may cause a routing loop.
  16. //! - **Rank M is greater than Rank N**: the position of node M is farther from the DODAG root
  17. //! than the position of N. Node M may in fact be in the sub-DODAG of node N. If node N selects
  18. //! node M as a DODAG parent, there is a risk of creating a loop.
  19. use super::consts::DEFAULT_MIN_HOP_RANK_INCREASE;
  20. /// The Rank is the expression of the relative position within a DODAG Version with regard to
  21. /// neighbors, and it is not necessarily a good indication or a proper expression of a distance or
  22. /// a path cost to the root.
  23. #[derive(Debug, Clone, Copy, Eq)]
  24. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  25. pub struct Rank {
  26. pub(super) value: u16,
  27. pub(super) min_hop_rank_increase: u16,
  28. }
  29. impl core::fmt::Display for Rank {
  30. fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
  31. write!(f, "Rank({})", self.dag_rank())
  32. }
  33. }
  34. impl Rank {
  35. pub const INFINITE: Self = Rank::new(0xffff, DEFAULT_MIN_HOP_RANK_INCREASE);
  36. /// The ROOT_RANK is the smallest rank possible.
  37. /// DAG_RANK(ROOT_RANK) should be 1. See RFC6550 § 17.
  38. pub const ROOT: Self = Rank::new(DEFAULT_MIN_HOP_RANK_INCREASE, DEFAULT_MIN_HOP_RANK_INCREASE);
  39. /// Create a new Rank from some value and a `MinHopRankIncrease`.
  40. /// The `MinHopRankIncrease` is used for calculating the integer part for comparing to other
  41. /// Ranks.
  42. pub const fn new(value: u16, min_hop_rank_increase: u16) -> Self {
  43. assert!(min_hop_rank_increase > 0);
  44. Self {
  45. value,
  46. min_hop_rank_increase,
  47. }
  48. }
  49. /// Return the integer part of the Rank.
  50. pub fn dag_rank(&self) -> u16 {
  51. self.value / self.min_hop_rank_increase
  52. }
  53. /// Return the raw Rank value.
  54. pub fn raw_value(&self) -> u16 {
  55. self.value
  56. }
  57. }
  58. impl PartialEq for Rank {
  59. fn eq(&self, other: &Self) -> bool {
  60. self.dag_rank() == other.dag_rank()
  61. }
  62. }
  63. impl PartialOrd for Rank {
  64. fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
  65. self.dag_rank().partial_cmp(&other.dag_rank())
  66. }
  67. }
  68. #[cfg(test)]
  69. mod tests {
  70. use super::*;
  71. #[test]
  72. fn calculate_rank() {
  73. let r = Rank::new(27, 16);
  74. assert_eq!(r.dag_rank(), 1)
  75. }
  76. #[test]
  77. fn comparison() {
  78. let r1 = Rank::ROOT;
  79. let r2 = Rank::new(16, 16);
  80. assert!(r1 == r2);
  81. let r1 = Rank::new(16, 16);
  82. let r2 = Rank::new(32, 16);
  83. assert!(r1 < r2);
  84. let r1 = Rank::ROOT;
  85. let r2 = Rank::INFINITE;
  86. assert!(r1 < r2);
  87. }
  88. }