interface.rs 175 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684
  1. // Heads up! Before working on this file you should read the parts
  2. // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
  3. // and RFCs 8200 and 4861 for any IPv6 and NDISC work.
  4. use core::cmp;
  5. use managed::{ManagedMap, ManagedSlice};
  6. #[cfg(any(feature = "proto-ipv4", feature = "proto-sixlowpan"))]
  7. use super::fragmentation::PacketAssemblerSet;
  8. use super::socket_set::SocketSet;
  9. use crate::iface::Routes;
  10. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  11. use crate::iface::{NeighborAnswer, NeighborCache};
  12. use crate::phy::{ChecksumCapabilities, Device, DeviceCapabilities, Medium, RxToken, TxToken};
  13. use crate::rand::Rand;
  14. #[cfg(feature = "socket-dhcpv4")]
  15. use crate::socket::dhcpv4;
  16. #[cfg(feature = "socket-dns")]
  17. use crate::socket::dns;
  18. use crate::socket::*;
  19. use crate::time::{Duration, Instant};
  20. use crate::wire::*;
  21. use crate::{Error, Result};
  22. pub(crate) struct FragmentsBuffer<'a> {
  23. #[cfg(feature = "proto-ipv4-fragmentation")]
  24. ipv4_fragments: PacketAssemblerSet<'a, Ipv4FragKey>,
  25. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  26. sixlowpan_fragments: PacketAssemblerSet<'a, SixlowpanFragKey>,
  27. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  28. sixlowpan_fragments_cache_timeout: Duration,
  29. #[cfg(not(any(
  30. feature = "proto-ipv4-fragmentation",
  31. feature = "proto-sixlowpan-fragmentation"
  32. )))]
  33. _lifetime: core::marker::PhantomData<&'a ()>,
  34. }
  35. pub(crate) struct OutPackets<'a> {
  36. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  37. sixlowpan_out_packet: SixlowpanOutPacket<'a>,
  38. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  39. _lifetime: core::marker::PhantomData<&'a ()>,
  40. }
  41. impl<'a> OutPackets<'a> {
  42. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  43. /// Returns `true` when all the data of the outgoing buffers are transmitted.
  44. fn all_transmitted(&self) -> bool {
  45. self.sixlowpan_out_packet.finished() || self.sixlowpan_out_packet.is_empty()
  46. }
  47. }
  48. #[allow(unused)]
  49. #[cfg(feature = "proto-sixlowpan")]
  50. pub(crate) struct SixlowpanOutPacket<'a> {
  51. /// The buffer that holds the unfragmented 6LoWPAN packet.
  52. buffer: ManagedSlice<'a, u8>,
  53. /// The size of the packet without the IEEE802.15.4 header and the fragmentation headers.
  54. packet_len: usize,
  55. /// The amount of bytes that already have been transmitted.
  56. sent_bytes: usize,
  57. /// The datagram size that is used for the fragmentation headers.
  58. datagram_size: u16,
  59. /// The datagram tag that is used for the fragmentation headers.
  60. datagram_tag: u16,
  61. datagram_offset: usize,
  62. /// The size of the FRAG_N packets.
  63. fragn_size: usize,
  64. /// The link layer IEEE802.15.4 source address.
  65. ll_dst_addr: Ieee802154Address,
  66. /// The link layer IEEE802.15.4 source address.
  67. ll_src_addr: Ieee802154Address,
  68. }
  69. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  70. impl<'a> SixlowpanOutPacket<'a> {
  71. pub(crate) fn new(buffer: ManagedSlice<'a, u8>) -> Self {
  72. Self {
  73. buffer,
  74. packet_len: 0,
  75. datagram_size: 0,
  76. datagram_tag: 0,
  77. datagram_offset: 0,
  78. sent_bytes: 0,
  79. fragn_size: 0,
  80. ll_dst_addr: Ieee802154Address::Absent,
  81. ll_src_addr: Ieee802154Address::Absent,
  82. }
  83. }
  84. /// Return `true` when everything is transmitted.
  85. #[inline]
  86. fn finished(&self) -> bool {
  87. self.packet_len == self.sent_bytes
  88. }
  89. /// Returns `true` when there is nothing to transmit.
  90. #[inline]
  91. fn is_empty(&self) -> bool {
  92. self.packet_len == 0
  93. }
  94. // Reset the buffer.
  95. fn reset(&mut self) {
  96. self.packet_len = 0;
  97. self.datagram_size = 0;
  98. self.datagram_tag = 0;
  99. self.sent_bytes = 0;
  100. self.fragn_size = 0;
  101. self.ll_dst_addr = Ieee802154Address::Absent;
  102. self.ll_src_addr = Ieee802154Address::Absent;
  103. }
  104. }
  105. macro_rules! check {
  106. ($e:expr) => {
  107. match $e {
  108. Ok(x) => x,
  109. Err(_) => {
  110. // concat!/stringify! doesn't work with defmt macros
  111. #[cfg(not(feature = "defmt"))]
  112. net_trace!(concat!("iface: malformed ", stringify!($e)));
  113. #[cfg(feature = "defmt")]
  114. net_trace!("iface: malformed");
  115. return Default::default();
  116. }
  117. }
  118. };
  119. }
  120. /// A network interface.
  121. ///
  122. /// The network interface logically owns a number of other data structures; to avoid
  123. /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
  124. /// a `&mut [T]`, or `Vec<T>` if a heap is available.
  125. pub struct Interface<'a> {
  126. inner: InterfaceInner<'a>,
  127. fragments: FragmentsBuffer<'a>,
  128. out_packets: OutPackets<'a>,
  129. }
  130. /// The device independent part of an Ethernet network interface.
  131. ///
  132. /// Separating the device from the data required for processing and dispatching makes
  133. /// it possible to borrow them independently. For example, the tx and rx tokens borrow
  134. /// the `device` mutably until they're used, which makes it impossible to call other
  135. /// methods on the `Interface` in this time (since its `device` field is borrowed
  136. /// exclusively). However, it is still possible to call methods on its `inner` field.
  137. pub struct InterfaceInner<'a> {
  138. caps: DeviceCapabilities,
  139. now: Instant,
  140. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  141. neighbor_cache: Option<NeighborCache<'a>>,
  142. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  143. hardware_addr: Option<HardwareAddress>,
  144. #[cfg(feature = "medium-ieee802154")]
  145. sequence_no: u8,
  146. #[cfg(feature = "medium-ieee802154")]
  147. pan_id: Option<Ieee802154Pan>,
  148. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  149. tag: u16,
  150. ip_addrs: ManagedSlice<'a, IpCidr>,
  151. #[cfg(feature = "proto-ipv4")]
  152. any_ip: bool,
  153. routes: Routes<'a>,
  154. #[cfg(feature = "proto-igmp")]
  155. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  156. /// When to report for (all or) the next multicast group membership via IGMP
  157. #[cfg(feature = "proto-igmp")]
  158. igmp_report_state: IgmpReportState,
  159. rand: Rand,
  160. }
  161. /// A builder structure used for creating a network interface.
  162. pub struct InterfaceBuilder<'a> {
  163. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  164. hardware_addr: Option<HardwareAddress>,
  165. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  166. neighbor_cache: Option<NeighborCache<'a>>,
  167. #[cfg(feature = "medium-ieee802154")]
  168. pan_id: Option<Ieee802154Pan>,
  169. ip_addrs: ManagedSlice<'a, IpCidr>,
  170. #[cfg(feature = "proto-ipv4")]
  171. any_ip: bool,
  172. routes: Routes<'a>,
  173. /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead.
  174. #[cfg(feature = "proto-igmp")]
  175. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  176. random_seed: u64,
  177. #[cfg(feature = "proto-ipv4-fragmentation")]
  178. ipv4_fragments: Option<PacketAssemblerSet<'a, Ipv4FragKey>>,
  179. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  180. sixlowpan_fragments: Option<PacketAssemblerSet<'a, SixlowpanFragKey>>,
  181. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  182. sixlowpan_fragments_cache_timeout: Duration,
  183. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  184. sixlowpan_out_buffer: Option<ManagedSlice<'a, u8>>,
  185. }
  186. impl<'a> InterfaceBuilder<'a> {
  187. /// Create a builder used for creating a network interface using the
  188. /// given device and address.
  189. #[cfg_attr(
  190. all(feature = "medium-ethernet", not(feature = "proto-sixlowpan")),
  191. doc = r##"
  192. # Examples
  193. ```
  194. # use std::collections::BTreeMap;
  195. #[cfg(feature = "proto-ipv4-fragmentation")]
  196. use smoltcp::iface::FragmentsCache;
  197. use smoltcp::iface::{InterfaceBuilder, NeighborCache};
  198. # use smoltcp::phy::{Loopback, Medium};
  199. use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress};
  200. let mut device = // ...
  201. # Loopback::new(Medium::Ethernet);
  202. let hw_addr = // ...
  203. # EthernetAddress::default();
  204. let neighbor_cache = // ...
  205. # NeighborCache::new(BTreeMap::new());
  206. # #[cfg(feature = "proto-ipv4-fragmentation")]
  207. # let ipv4_frag_cache = // ...
  208. # FragmentsCache::new(vec![], BTreeMap::new());
  209. let ip_addrs = // ...
  210. # [];
  211. let builder = InterfaceBuilder::new()
  212. .hardware_addr(hw_addr.into())
  213. .neighbor_cache(neighbor_cache)
  214. .ip_addrs(ip_addrs);
  215. # #[cfg(feature = "proto-ipv4-fragmentation")]
  216. let builder = builder.ipv4_fragments_cache(ipv4_frag_cache);
  217. let iface = builder.finalize(&mut device);
  218. ```
  219. "##
  220. )]
  221. #[allow(clippy::new_without_default)]
  222. pub fn new() -> Self {
  223. InterfaceBuilder {
  224. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  225. hardware_addr: None,
  226. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  227. neighbor_cache: None,
  228. #[cfg(feature = "medium-ieee802154")]
  229. pan_id: None,
  230. ip_addrs: ManagedSlice::Borrowed(&mut []),
  231. #[cfg(feature = "proto-ipv4")]
  232. any_ip: false,
  233. routes: Routes::new(ManagedMap::Borrowed(&mut [])),
  234. #[cfg(feature = "proto-igmp")]
  235. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  236. random_seed: 0,
  237. #[cfg(feature = "proto-ipv4-fragmentation")]
  238. ipv4_fragments: None,
  239. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  240. sixlowpan_fragments: None,
  241. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  242. sixlowpan_fragments_cache_timeout: Duration::from_secs(60),
  243. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  244. sixlowpan_out_buffer: None,
  245. }
  246. }
  247. /// Set the random seed for this interface.
  248. ///
  249. /// It is strongly recommended that the random seed is different on each boot,
  250. /// to avoid problems with TCP port/sequence collisions.
  251. ///
  252. /// The seed doesn't have to be cryptographically secure.
  253. pub fn random_seed(mut self, random_seed: u64) -> Self {
  254. self.random_seed = random_seed;
  255. self
  256. }
  257. /// Set the Hardware address the interface will use. See also
  258. /// [hardware_addr].
  259. ///
  260. /// # Panics
  261. /// This function panics if the address is not unicast.
  262. ///
  263. /// [hardware_addr]: struct.Interface.html#method.hardware_addr
  264. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  265. pub fn hardware_addr(mut self, addr: HardwareAddress) -> Self {
  266. InterfaceInner::check_hardware_addr(&addr);
  267. self.hardware_addr = Some(addr);
  268. self
  269. }
  270. /// Set the IEEE802.15.4 PAN ID the interface will use.
  271. ///
  272. /// **NOTE**: we use the same PAN ID for destination and source.
  273. #[cfg(feature = "medium-ieee802154")]
  274. pub fn pan_id(mut self, pan_id: Ieee802154Pan) -> Self {
  275. self.pan_id = Some(pan_id);
  276. self
  277. }
  278. /// Set the IP addresses the interface will use. See also
  279. /// [ip_addrs].
  280. ///
  281. /// # Panics
  282. /// This function panics if any of the addresses are not unicast.
  283. ///
  284. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  285. pub fn ip_addrs<T>(mut self, ip_addrs: T) -> Self
  286. where
  287. T: Into<ManagedSlice<'a, IpCidr>>,
  288. {
  289. let ip_addrs = ip_addrs.into();
  290. InterfaceInner::check_ip_addrs(&ip_addrs);
  291. self.ip_addrs = ip_addrs;
  292. self
  293. }
  294. /// Enable or disable the AnyIP capability, allowing packets to be received
  295. /// locally on IPv4 addresses other than the interface's configured [ip_addrs].
  296. /// When AnyIP is enabled and a route prefix in [routes] specifies one of
  297. /// the interface's [ip_addrs] as its gateway, the interface will accept
  298. /// packets addressed to that prefix.
  299. ///
  300. /// # IPv6
  301. ///
  302. /// This option is not available or required for IPv6 as packets sent to
  303. /// the interface are not filtered by IPv6 address.
  304. ///
  305. /// [routes]: struct.Interface.html#method.routes
  306. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  307. #[cfg(feature = "proto-ipv4")]
  308. pub fn any_ip(mut self, enabled: bool) -> Self {
  309. self.any_ip = enabled;
  310. self
  311. }
  312. /// Set the IP routes the interface will use. See also
  313. /// [routes].
  314. ///
  315. /// [routes]: struct.Interface.html#method.routes
  316. pub fn routes<T>(mut self, routes: T) -> InterfaceBuilder<'a>
  317. where
  318. T: Into<Routes<'a>>,
  319. {
  320. self.routes = routes.into();
  321. self
  322. }
  323. /// Provide storage for multicast groups.
  324. ///
  325. /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`.
  326. /// Using [`join_multicast_group()`] will send initial membership reports.
  327. ///
  328. /// A previously destroyed interface can be recreated by reusing the multicast group
  329. /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`.
  330. /// Note that this way initial membership reports are **not** sent.
  331. ///
  332. /// [`join_multicast_group()`]: struct.Interface.html#method.join_multicast_group
  333. #[cfg(feature = "proto-igmp")]
  334. pub fn ipv4_multicast_groups<T>(mut self, ipv4_multicast_groups: T) -> Self
  335. where
  336. T: Into<ManagedMap<'a, Ipv4Address, ()>>,
  337. {
  338. self.ipv4_multicast_groups = ipv4_multicast_groups.into();
  339. self
  340. }
  341. /// Set the Neighbor Cache the interface will use.
  342. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  343. pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'a>) -> Self {
  344. self.neighbor_cache = Some(neighbor_cache);
  345. self
  346. }
  347. #[cfg(feature = "proto-ipv4-fragmentation")]
  348. pub fn ipv4_fragments_cache(mut self, storage: PacketAssemblerSet<'a, Ipv4FragKey>) -> Self {
  349. self.ipv4_fragments = Some(storage);
  350. self
  351. }
  352. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  353. pub fn sixlowpan_fragments_cache(
  354. mut self,
  355. storage: PacketAssemblerSet<'a, SixlowpanFragKey>,
  356. ) -> Self {
  357. self.sixlowpan_fragments = Some(storage);
  358. self
  359. }
  360. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  361. pub fn sixlowpan_fragments_cache_timeout(mut self, timeout: Duration) -> Self {
  362. if timeout > Duration::from_secs(60) {
  363. net_debug!("RFC 4944 specifies that the reassembly timeout MUST be set to a maximum of 60 seconds");
  364. }
  365. self.sixlowpan_fragments_cache_timeout = timeout;
  366. self
  367. }
  368. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  369. pub fn sixlowpan_out_packet_cache<T>(mut self, storage: T) -> Self
  370. where
  371. T: Into<ManagedSlice<'a, u8>>,
  372. {
  373. self.sixlowpan_out_buffer = Some(storage.into());
  374. self
  375. }
  376. /// Create a network interface using the previously provided configuration.
  377. ///
  378. /// # Panics
  379. /// If a required option is not provided, this function will panic. Required
  380. /// options are:
  381. ///
  382. /// - [ethernet_addr]
  383. /// - [neighbor_cache]
  384. ///
  385. /// [ethernet_addr]: #method.ethernet_addr
  386. /// [neighbor_cache]: #method.neighbor_cache
  387. pub fn finalize<D>(self, device: &mut D) -> Interface<'a>
  388. where
  389. D: for<'d> Device<'d>,
  390. {
  391. let caps = device.capabilities();
  392. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  393. let (hardware_addr, neighbor_cache) = match caps.medium {
  394. #[cfg(feature = "medium-ethernet")]
  395. Medium::Ethernet => (
  396. Some(
  397. self.hardware_addr
  398. .expect("hardware_addr required option was not set"),
  399. ),
  400. Some(
  401. self.neighbor_cache
  402. .expect("neighbor_cache required option was not set"),
  403. ),
  404. ),
  405. #[cfg(feature = "medium-ip")]
  406. Medium::Ip => {
  407. assert!(
  408. self.hardware_addr.is_none(),
  409. "hardware_addr is set, but device medium is IP"
  410. );
  411. assert!(
  412. self.neighbor_cache.is_none(),
  413. "neighbor_cache is set, but device medium is IP"
  414. );
  415. (None, None)
  416. }
  417. #[cfg(feature = "medium-ieee802154")]
  418. Medium::Ieee802154 => (
  419. Some(
  420. self.hardware_addr
  421. .expect("hardware_addr required option was not set"),
  422. ),
  423. Some(
  424. self.neighbor_cache
  425. .expect("neighbor_cache required option was not set"),
  426. ),
  427. ),
  428. };
  429. #[cfg(feature = "medium-ieee802154")]
  430. let mut rand = Rand::new(self.random_seed);
  431. #[cfg(not(feature = "medium-ieee802154"))]
  432. let rand = Rand::new(self.random_seed);
  433. #[cfg(feature = "medium-ieee802154")]
  434. let mut sequence_no;
  435. #[cfg(feature = "medium-ieee802154")]
  436. loop {
  437. sequence_no = (rand.rand_u32() & 0xff) as u8;
  438. if sequence_no != 0 {
  439. break;
  440. }
  441. }
  442. #[cfg(feature = "proto-sixlowpan")]
  443. let mut tag;
  444. #[cfg(feature = "proto-sixlowpan")]
  445. loop {
  446. tag = (rand.rand_u32() & 0xffff) as u16;
  447. if tag != 0 {
  448. break;
  449. }
  450. }
  451. Interface {
  452. fragments: FragmentsBuffer {
  453. #[cfg(feature = "proto-ipv4-fragmentation")]
  454. ipv4_fragments: self
  455. .ipv4_fragments
  456. .expect("Cache for incoming IPv4 fragments is required"),
  457. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  458. sixlowpan_fragments: self
  459. .sixlowpan_fragments
  460. .expect("Cache for incoming 6LoWPAN fragments is required"),
  461. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  462. sixlowpan_fragments_cache_timeout: self.sixlowpan_fragments_cache_timeout,
  463. #[cfg(not(any(
  464. feature = "proto-ipv4-fragmentation",
  465. feature = "proto-sixlowpan-fragmentation"
  466. )))]
  467. _lifetime: core::marker::PhantomData,
  468. },
  469. out_packets: OutPackets {
  470. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  471. sixlowpan_out_packet: SixlowpanOutPacket::new(
  472. self.sixlowpan_out_buffer
  473. .expect("Cache for outgoing 6LoWPAN fragments is required"),
  474. ),
  475. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  476. _lifetime: core::marker::PhantomData,
  477. },
  478. inner: InterfaceInner {
  479. now: Instant::from_secs(0),
  480. caps,
  481. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  482. hardware_addr,
  483. ip_addrs: self.ip_addrs,
  484. #[cfg(feature = "proto-ipv4")]
  485. any_ip: self.any_ip,
  486. routes: self.routes,
  487. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  488. neighbor_cache,
  489. #[cfg(feature = "proto-igmp")]
  490. ipv4_multicast_groups: self.ipv4_multicast_groups,
  491. #[cfg(feature = "proto-igmp")]
  492. igmp_report_state: IgmpReportState::Inactive,
  493. #[cfg(feature = "medium-ieee802154")]
  494. sequence_no,
  495. #[cfg(feature = "medium-ieee802154")]
  496. pan_id: self.pan_id,
  497. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  498. tag,
  499. rand,
  500. },
  501. }
  502. }
  503. }
  504. #[derive(Debug, PartialEq)]
  505. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  506. #[cfg(feature = "medium-ethernet")]
  507. enum EthernetPacket<'a> {
  508. #[cfg(feature = "proto-ipv4")]
  509. Arp(ArpRepr),
  510. Ip(IpPacket<'a>),
  511. }
  512. #[derive(Debug, PartialEq)]
  513. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  514. pub(crate) enum IpPacket<'a> {
  515. #[cfg(feature = "proto-ipv4")]
  516. Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)),
  517. #[cfg(feature = "proto-igmp")]
  518. Igmp((Ipv4Repr, IgmpRepr)),
  519. #[cfg(feature = "proto-ipv6")]
  520. Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)),
  521. #[cfg(feature = "socket-raw")]
  522. Raw((IpRepr, &'a [u8])),
  523. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  524. Udp((IpRepr, UdpRepr, &'a [u8])),
  525. #[cfg(feature = "socket-tcp")]
  526. Tcp((IpRepr, TcpRepr<'a>)),
  527. #[cfg(feature = "socket-dhcpv4")]
  528. Dhcpv4((Ipv4Repr, UdpRepr, DhcpRepr<'a>)),
  529. }
  530. impl<'a> IpPacket<'a> {
  531. pub(crate) fn ip_repr(&self) -> IpRepr {
  532. match self {
  533. #[cfg(feature = "proto-ipv4")]
  534. IpPacket::Icmpv4((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  535. #[cfg(feature = "proto-igmp")]
  536. IpPacket::Igmp((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  537. #[cfg(feature = "proto-ipv6")]
  538. IpPacket::Icmpv6((ipv6_repr, _)) => IpRepr::Ipv6(*ipv6_repr),
  539. #[cfg(feature = "socket-raw")]
  540. IpPacket::Raw((ip_repr, _)) => ip_repr.clone(),
  541. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  542. IpPacket::Udp((ip_repr, _, _)) => ip_repr.clone(),
  543. #[cfg(feature = "socket-tcp")]
  544. IpPacket::Tcp((ip_repr, _)) => ip_repr.clone(),
  545. #[cfg(feature = "socket-dhcpv4")]
  546. IpPacket::Dhcpv4((ipv4_repr, _, _)) => IpRepr::Ipv4(*ipv4_repr),
  547. }
  548. }
  549. pub(crate) fn emit_payload(
  550. &self,
  551. _ip_repr: IpRepr,
  552. payload: &mut [u8],
  553. caps: &DeviceCapabilities,
  554. ) {
  555. match self {
  556. #[cfg(feature = "proto-ipv4")]
  557. IpPacket::Icmpv4((_, icmpv4_repr)) => {
  558. icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &caps.checksum)
  559. }
  560. #[cfg(feature = "proto-igmp")]
  561. IpPacket::Igmp((_, igmp_repr)) => {
  562. igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload))
  563. }
  564. #[cfg(feature = "proto-ipv6")]
  565. IpPacket::Icmpv6((_, icmpv6_repr)) => icmpv6_repr.emit(
  566. &_ip_repr.src_addr(),
  567. &_ip_repr.dst_addr(),
  568. &mut Icmpv6Packet::new_unchecked(payload),
  569. &caps.checksum,
  570. ),
  571. #[cfg(feature = "socket-raw")]
  572. IpPacket::Raw((_, raw_packet)) => payload.copy_from_slice(raw_packet),
  573. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  574. IpPacket::Udp((_, udp_repr, inner_payload)) => udp_repr.emit(
  575. &mut UdpPacket::new_unchecked(payload),
  576. &_ip_repr.src_addr(),
  577. &_ip_repr.dst_addr(),
  578. inner_payload.len(),
  579. |buf| buf.copy_from_slice(inner_payload),
  580. &caps.checksum,
  581. ),
  582. #[cfg(feature = "socket-tcp")]
  583. IpPacket::Tcp((_, mut tcp_repr)) => {
  584. // This is a terrible hack to make TCP performance more acceptable on systems
  585. // where the TCP buffers are significantly larger than network buffers,
  586. // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window)
  587. // together with four 1500 B Ethernet receive buffers. If left untreated,
  588. // this would result in our peer pushing our window and sever packet loss.
  589. //
  590. // I'm really not happy about this "solution" but I don't know what else to do.
  591. if let Some(max_burst_size) = caps.max_burst_size {
  592. let mut max_segment_size = caps.max_transmission_unit;
  593. max_segment_size -= _ip_repr.buffer_len();
  594. max_segment_size -= tcp_repr.header_len();
  595. let max_window_size = max_burst_size * max_segment_size;
  596. if tcp_repr.window_len as usize > max_window_size {
  597. tcp_repr.window_len = max_window_size as u16;
  598. }
  599. }
  600. tcp_repr.emit(
  601. &mut TcpPacket::new_unchecked(payload),
  602. &_ip_repr.src_addr(),
  603. &_ip_repr.dst_addr(),
  604. &caps.checksum,
  605. );
  606. }
  607. #[cfg(feature = "socket-dhcpv4")]
  608. IpPacket::Dhcpv4((_, udp_repr, dhcp_repr)) => udp_repr.emit(
  609. &mut UdpPacket::new_unchecked(payload),
  610. &_ip_repr.src_addr(),
  611. &_ip_repr.dst_addr(),
  612. dhcp_repr.buffer_len(),
  613. |buf| dhcp_repr.emit(&mut DhcpPacket::new_unchecked(buf)).unwrap(),
  614. &caps.checksum,
  615. ),
  616. }
  617. }
  618. }
  619. #[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))]
  620. fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize {
  621. // Send back as much of the original payload as will fit within
  622. // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for
  623. // more details.
  624. //
  625. // Since the entire network layer packet must fit within the minimum
  626. // MTU supported, the payload must not exceed the following:
  627. //
  628. // <min mtu> - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size
  629. cmp::min(len, mtu - header_len * 2 - 8)
  630. }
  631. #[cfg(feature = "proto-igmp")]
  632. enum IgmpReportState {
  633. Inactive,
  634. ToGeneralQuery {
  635. version: IgmpVersion,
  636. timeout: Instant,
  637. interval: Duration,
  638. next_index: usize,
  639. },
  640. ToSpecificQuery {
  641. version: IgmpVersion,
  642. timeout: Instant,
  643. group: Ipv4Address,
  644. },
  645. }
  646. impl<'a> Interface<'a> {
  647. /// Get the socket context.
  648. ///
  649. /// The context is needed for some socket methods.
  650. pub fn context(&mut self) -> &mut InterfaceInner<'a> {
  651. &mut self.inner
  652. }
  653. /// Get the HardwareAddress address of the interface.
  654. ///
  655. /// # Panics
  656. /// This function panics if the medium is not Ethernet or Ieee802154.
  657. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  658. pub fn hardware_addr(&self) -> HardwareAddress {
  659. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  660. assert!(self.inner.caps.medium == Medium::Ethernet);
  661. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  662. assert!(self.inner.caps.medium == Medium::Ieee802154);
  663. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  664. assert!(
  665. self.inner.caps.medium == Medium::Ethernet
  666. || self.inner.caps.medium == Medium::Ieee802154
  667. );
  668. self.inner.hardware_addr.unwrap()
  669. }
  670. /// Set the HardwareAddress address of the interface.
  671. ///
  672. /// # Panics
  673. /// This function panics if the address is not unicast, and if the medium is not Ethernet or
  674. /// Ieee802154.
  675. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  676. pub fn set_hardware_addr(&mut self, addr: HardwareAddress) {
  677. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  678. assert!(self.inner.caps.medium == Medium::Ethernet);
  679. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  680. assert!(self.inner.caps.medium == Medium::Ieee802154);
  681. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  682. assert!(
  683. self.inner.caps.medium == Medium::Ethernet
  684. || self.inner.caps.medium == Medium::Ieee802154
  685. );
  686. InterfaceInner::check_hardware_addr(&addr);
  687. self.inner.hardware_addr = Some(addr);
  688. }
  689. /// Add an address to a list of subscribed multicast IP addresses.
  690. ///
  691. /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent`
  692. /// indicates whether an initial immediate announcement has been sent.
  693. pub fn join_multicast_group<D, T: Into<IpAddress>>(
  694. &mut self,
  695. device: &mut D,
  696. addr: T,
  697. timestamp: Instant,
  698. ) -> Result<bool>
  699. where
  700. D: for<'d> Device<'d>,
  701. {
  702. self.inner.now = timestamp;
  703. match addr.into() {
  704. #[cfg(feature = "proto-igmp")]
  705. IpAddress::Ipv4(addr) => {
  706. let is_not_new = self
  707. .inner
  708. .ipv4_multicast_groups
  709. .insert(addr, ())
  710. .map_err(|_| Error::Exhausted)?
  711. .is_some();
  712. if is_not_new {
  713. Ok(false)
  714. } else if let Some(pkt) = self.inner.igmp_report_packet(IgmpVersion::Version2, addr)
  715. {
  716. // Send initial membership report
  717. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  718. self.inner.dispatch_ip(tx_token, pkt, None)?;
  719. Ok(true)
  720. } else {
  721. Ok(false)
  722. }
  723. }
  724. // Multicast is not yet implemented for other address families
  725. #[allow(unreachable_patterns)]
  726. _ => Err(Error::Unaddressable),
  727. }
  728. }
  729. /// Remove an address from the subscribed multicast IP addresses.
  730. ///
  731. /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent`
  732. /// indicates whether an immediate leave packet has been sent.
  733. pub fn leave_multicast_group<D, T: Into<IpAddress>>(
  734. &mut self,
  735. device: &mut D,
  736. addr: T,
  737. timestamp: Instant,
  738. ) -> Result<bool>
  739. where
  740. D: for<'d> Device<'d>,
  741. {
  742. self.inner.now = timestamp;
  743. match addr.into() {
  744. #[cfg(feature = "proto-igmp")]
  745. IpAddress::Ipv4(addr) => {
  746. let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr).is_none();
  747. if was_not_present {
  748. Ok(false)
  749. } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) {
  750. // Send group leave packet
  751. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  752. self.inner.dispatch_ip(tx_token, pkt, None)?;
  753. Ok(true)
  754. } else {
  755. Ok(false)
  756. }
  757. }
  758. // Multicast is not yet implemented for other address families
  759. #[allow(unreachable_patterns)]
  760. _ => Err(Error::Unaddressable),
  761. }
  762. }
  763. /// Check whether the interface listens to given destination multicast IP address.
  764. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  765. self.inner.has_multicast_group(addr)
  766. }
  767. /// Get the IP addresses of the interface.
  768. pub fn ip_addrs(&self) -> &[IpCidr] {
  769. self.inner.ip_addrs.as_ref()
  770. }
  771. /// Get the first IPv4 address if present.
  772. #[cfg(feature = "proto-ipv4")]
  773. pub fn ipv4_addr(&self) -> Option<Ipv4Address> {
  774. self.ip_addrs()
  775. .iter()
  776. .find_map(|cidr| match cidr.address() {
  777. IpAddress::Ipv4(addr) => Some(addr),
  778. #[allow(unreachable_patterns)]
  779. _ => None,
  780. })
  781. }
  782. /// Update the IP addresses of the interface.
  783. ///
  784. /// # Panics
  785. /// This function panics if any of the addresses are not unicast.
  786. pub fn update_ip_addrs<F: FnOnce(&mut ManagedSlice<'a, IpCidr>)>(&mut self, f: F) {
  787. f(&mut self.inner.ip_addrs);
  788. InterfaceInner::flush_cache(&mut self.inner);
  789. InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
  790. }
  791. /// Check whether the interface has the given IP address assigned.
  792. pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  793. self.inner.has_ip_addr(addr)
  794. }
  795. /// Get the first IPv4 address of the interface.
  796. #[cfg(feature = "proto-ipv4")]
  797. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  798. self.inner.ipv4_address()
  799. }
  800. pub fn routes(&self) -> &Routes<'a> {
  801. &self.inner.routes
  802. }
  803. pub fn routes_mut(&mut self) -> &mut Routes<'a> {
  804. &mut self.inner.routes
  805. }
  806. /// Transmit packets queued in the given sockets, and receive packets queued
  807. /// in the device.
  808. ///
  809. /// This function returns a boolean value indicating whether any packets were
  810. /// processed or emitted, and thus, whether the readiness of any socket might
  811. /// have changed.
  812. ///
  813. /// # Errors
  814. /// This method will routinely return errors in response to normal network
  815. /// activity as well as certain boundary conditions such as buffer exhaustion.
  816. /// These errors are provided as an aid for troubleshooting, and are meant
  817. /// to be logged and ignored.
  818. ///
  819. /// As a special case, `Err(Error::Unrecognized)` is returned in response to
  820. /// packets containing any unsupported protocol, option, or form, which is
  821. /// a very common occurrence and on a production system it should not even
  822. /// be logged.
  823. pub fn poll<D>(
  824. &mut self,
  825. timestamp: Instant,
  826. device: &mut D,
  827. sockets: &mut SocketSet<'_>,
  828. ) -> Result<bool>
  829. where
  830. D: for<'d> Device<'d>,
  831. {
  832. self.inner.now = timestamp;
  833. #[cfg(feature = "proto-ipv4-fragmentation")]
  834. if let Err(e) = self
  835. .fragments
  836. .ipv4_fragments
  837. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  838. {
  839. return Err(e);
  840. }
  841. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  842. if let Err(e) = self
  843. .fragments
  844. .sixlowpan_fragments
  845. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  846. {
  847. return Err(e);
  848. }
  849. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  850. match self.sixlowpan_egress(device) {
  851. Ok(true) => return Ok(true),
  852. Err(e) => return Err(e),
  853. _ => (),
  854. }
  855. let mut readiness_may_have_changed = false;
  856. loop {
  857. let processed_any = self.socket_ingress(device, sockets);
  858. let emitted_any = self.socket_egress(device, sockets);
  859. #[cfg(feature = "proto-igmp")]
  860. self.igmp_egress(device)?;
  861. if processed_any || emitted_any {
  862. readiness_may_have_changed = true;
  863. } else {
  864. break;
  865. }
  866. }
  867. Ok(readiness_may_have_changed)
  868. }
  869. /// Return a _soft deadline_ for calling [poll] the next time.
  870. /// The [Instant] returned is the time at which you should call [poll] next.
  871. /// It is harmless (but wastes energy) to call it before the [Instant], and
  872. /// potentially harmful (impacting quality of service) to call it after the
  873. /// [Instant]
  874. ///
  875. /// [poll]: #method.poll
  876. /// [Instant]: struct.Instant.html
  877. pub fn poll_at(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Instant> {
  878. self.inner.now = timestamp;
  879. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  880. if !self.out_packets.all_transmitted() {
  881. return Some(Instant::from_millis(0));
  882. }
  883. let inner = &mut self.inner;
  884. sockets
  885. .items()
  886. .filter_map(move |item| {
  887. let socket_poll_at = item.socket.poll_at(inner);
  888. match item
  889. .meta
  890. .poll_at(socket_poll_at, |ip_addr| inner.has_neighbor(&ip_addr))
  891. {
  892. PollAt::Ingress => None,
  893. PollAt::Time(instant) => Some(instant),
  894. PollAt::Now => Some(Instant::from_millis(0)),
  895. }
  896. })
  897. .min()
  898. }
  899. /// Return an _advisory wait time_ for calling [poll] the next time.
  900. /// The [Duration] returned is the time left to wait before calling [poll] next.
  901. /// It is harmless (but wastes energy) to call it before the [Duration] has passed,
  902. /// and potentially harmful (impacting quality of service) to call it after the
  903. /// [Duration] has passed.
  904. ///
  905. /// [poll]: #method.poll
  906. /// [Duration]: struct.Duration.html
  907. pub fn poll_delay(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Duration> {
  908. match self.poll_at(timestamp, sockets) {
  909. Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp),
  910. Some(_) => Some(Duration::from_millis(0)),
  911. _ => None,
  912. }
  913. }
  914. fn socket_ingress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  915. where
  916. D: for<'d> Device<'d>,
  917. {
  918. let mut processed_any = false;
  919. let Self {
  920. inner,
  921. fragments: ref mut _fragments,
  922. out_packets: _out_packets,
  923. } = self;
  924. while let Some((rx_token, tx_token)) = device.receive() {
  925. let res = rx_token.consume(inner.now, |frame| {
  926. match inner.caps.medium {
  927. #[cfg(feature = "medium-ethernet")]
  928. Medium::Ethernet => {
  929. if let Some(packet) = inner.process_ethernet(sockets, &frame, _fragments) {
  930. if let Err(err) = inner.dispatch(tx_token, packet) {
  931. net_debug!("Failed to send response: {}", err);
  932. }
  933. }
  934. }
  935. #[cfg(feature = "medium-ip")]
  936. Medium::Ip => {
  937. if let Some(packet) = inner.process_ip(sockets, &frame, _fragments) {
  938. if let Err(err) = inner.dispatch_ip(tx_token, packet, None) {
  939. net_debug!("Failed to send response: {}", err);
  940. }
  941. }
  942. }
  943. #[cfg(feature = "medium-ieee802154")]
  944. Medium::Ieee802154 => {
  945. if let Some(packet) = inner.process_ieee802154(sockets, &frame, _fragments)
  946. {
  947. if let Err(err) =
  948. inner.dispatch_ip(tx_token, packet, Some(_out_packets))
  949. {
  950. net_debug!("Failed to send response: {}", err);
  951. }
  952. }
  953. }
  954. }
  955. processed_any = true;
  956. Ok(())
  957. });
  958. if let Err(err) = res {
  959. net_debug!("Failed to consume RX token: {}", err);
  960. }
  961. }
  962. processed_any
  963. }
  964. fn socket_egress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  965. where
  966. D: for<'d> Device<'d>,
  967. {
  968. let Self {
  969. inner,
  970. out_packets: _out_packets,
  971. ..
  972. } = self;
  973. let _caps = device.capabilities();
  974. let mut emitted_any = false;
  975. for item in sockets.items_mut() {
  976. if !item
  977. .meta
  978. .egress_permitted(inner.now, |ip_addr| inner.has_neighbor(&ip_addr))
  979. {
  980. continue;
  981. }
  982. let mut neighbor_addr = None;
  983. let mut respond = |inner: &mut InterfaceInner, response: IpPacket| {
  984. neighbor_addr = Some(response.ip_repr().dst_addr());
  985. match device.transmit().ok_or(Error::Exhausted) {
  986. Ok(_t) => {
  987. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  988. if let Err(_e) = inner.dispatch_ip(_t, response, Some(_out_packets)) {
  989. net_debug!("failed to dispatch IP: {}", _e);
  990. }
  991. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  992. if let Err(_e) = inner.dispatch_ip(_t, response, None) {
  993. net_debug!("failed to dispatch IP: {}", _e);
  994. }
  995. emitted_any = true;
  996. }
  997. Err(e) => {
  998. net_debug!("failed to transmit IP: {}", e);
  999. }
  1000. }
  1001. Ok(())
  1002. };
  1003. let result = match &mut item.socket {
  1004. #[cfg(feature = "socket-raw")]
  1005. Socket::Raw(socket) => socket.dispatch(inner, |inner, response| {
  1006. respond(inner, IpPacket::Raw(response))
  1007. }),
  1008. #[cfg(feature = "socket-icmp")]
  1009. Socket::Icmp(socket) => socket.dispatch(inner, |inner, response| match response {
  1010. #[cfg(feature = "proto-ipv4")]
  1011. (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => {
  1012. respond(inner, IpPacket::Icmpv4((ipv4_repr, icmpv4_repr)))
  1013. }
  1014. #[cfg(feature = "proto-ipv6")]
  1015. (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => {
  1016. respond(inner, IpPacket::Icmpv6((ipv6_repr, icmpv6_repr)))
  1017. }
  1018. #[allow(unreachable_patterns)]
  1019. _ => unreachable!(),
  1020. }),
  1021. #[cfg(feature = "socket-udp")]
  1022. Socket::Udp(socket) => socket.dispatch(inner, |inner, response| {
  1023. respond(inner, IpPacket::Udp(response))
  1024. }),
  1025. #[cfg(feature = "socket-tcp")]
  1026. Socket::Tcp(socket) => socket.dispatch(inner, |inner, response| {
  1027. respond(inner, IpPacket::Tcp(response))
  1028. }),
  1029. #[cfg(feature = "socket-dhcpv4")]
  1030. Socket::Dhcpv4(socket) => socket.dispatch(inner, |inner, response| {
  1031. respond(inner, IpPacket::Dhcpv4(response))
  1032. }),
  1033. #[cfg(feature = "socket-dns")]
  1034. Socket::Dns(ref mut socket) => socket.dispatch(inner, |inner, response| {
  1035. respond(inner, IpPacket::Udp(response))
  1036. }),
  1037. };
  1038. match result {
  1039. Err(Error::Exhausted) => break, // Device buffer full.
  1040. Err(Error::Unaddressable) => {
  1041. // `NeighborCache` already takes care of rate limiting the neighbor discovery
  1042. // requests from the socket. However, without an additional rate limiting
  1043. // mechanism, we would spin on every socket that has yet to discover its
  1044. // neighbor.
  1045. item.meta.neighbor_missing(
  1046. inner.now,
  1047. neighbor_addr.expect("non-IP response packet"),
  1048. );
  1049. break;
  1050. }
  1051. Err(err) => {
  1052. net_debug!(
  1053. "{}: cannot dispatch egress packet: {}",
  1054. item.meta.handle,
  1055. err
  1056. );
  1057. }
  1058. Ok(()) => {}
  1059. }
  1060. }
  1061. emitted_any
  1062. }
  1063. /// Depending on `igmp_report_state` and the therein contained
  1064. /// timeouts, send IGMP membership reports.
  1065. #[cfg(feature = "proto-igmp")]
  1066. fn igmp_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1067. where
  1068. D: for<'d> Device<'d>,
  1069. {
  1070. match self.inner.igmp_report_state {
  1071. IgmpReportState::ToSpecificQuery {
  1072. version,
  1073. timeout,
  1074. group,
  1075. } if self.inner.now >= timeout => {
  1076. if let Some(pkt) = self.inner.igmp_report_packet(version, group) {
  1077. // Send initial membership report
  1078. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1079. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1080. }
  1081. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1082. Ok(true)
  1083. }
  1084. IgmpReportState::ToGeneralQuery {
  1085. version,
  1086. timeout,
  1087. interval,
  1088. next_index,
  1089. } if self.inner.now >= timeout => {
  1090. let addr = self
  1091. .inner
  1092. .ipv4_multicast_groups
  1093. .iter()
  1094. .nth(next_index)
  1095. .map(|(addr, ())| *addr);
  1096. match addr {
  1097. Some(addr) => {
  1098. if let Some(pkt) = self.inner.igmp_report_packet(version, addr) {
  1099. // Send initial membership report
  1100. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1101. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1102. }
  1103. let next_timeout = (timeout + interval).max(self.inner.now);
  1104. self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1105. version,
  1106. timeout: next_timeout,
  1107. interval,
  1108. next_index: next_index + 1,
  1109. };
  1110. Ok(true)
  1111. }
  1112. None => {
  1113. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1114. Ok(false)
  1115. }
  1116. }
  1117. }
  1118. _ => Ok(false),
  1119. }
  1120. }
  1121. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1122. fn sixlowpan_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1123. where
  1124. D: for<'d> Device<'d>,
  1125. {
  1126. let SixlowpanOutPacket {
  1127. packet_len,
  1128. sent_bytes,
  1129. ..
  1130. } = &self.out_packets.sixlowpan_out_packet;
  1131. if *packet_len == 0 {
  1132. return Ok(false);
  1133. }
  1134. if *packet_len > *sent_bytes {
  1135. match device.transmit().ok_or(Error::Exhausted) {
  1136. Ok(tx_token) => {
  1137. if let Err(e) = self.inner.dispatch_ieee802154_out_packet(
  1138. tx_token,
  1139. &mut self.out_packets.sixlowpan_out_packet,
  1140. ) {
  1141. net_debug!("failed to transmit: {}", e);
  1142. }
  1143. // Reset the buffer when we transmitted everything.
  1144. if self.out_packets.sixlowpan_out_packet.finished() {
  1145. self.out_packets.sixlowpan_out_packet.reset();
  1146. }
  1147. }
  1148. Err(e) => {
  1149. net_debug!("failed to transmit: {}", e);
  1150. }
  1151. }
  1152. Ok(true)
  1153. } else {
  1154. Ok(false)
  1155. }
  1156. }
  1157. }
  1158. impl<'a> InterfaceInner<'a> {
  1159. #[allow(unused)] // unused depending on which sockets are enabled
  1160. pub(crate) fn now(&self) -> Instant {
  1161. self.now
  1162. }
  1163. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1164. #[allow(unused)] // unused depending on which sockets are enabled
  1165. pub(crate) fn hardware_addr(&self) -> Option<HardwareAddress> {
  1166. self.hardware_addr
  1167. }
  1168. #[allow(unused)] // unused depending on which sockets are enabled
  1169. pub(crate) fn checksum_caps(&self) -> ChecksumCapabilities {
  1170. self.caps.checksum.clone()
  1171. }
  1172. #[allow(unused)] // unused depending on which sockets are enabled
  1173. pub(crate) fn ip_mtu(&self) -> usize {
  1174. self.caps.ip_mtu()
  1175. }
  1176. #[allow(unused)] // unused depending on which sockets are enabled, and in tests
  1177. pub(crate) fn rand(&mut self) -> &mut Rand {
  1178. &mut self.rand
  1179. }
  1180. #[allow(unused)] // unused depending on which sockets are enabled
  1181. pub(crate) fn get_source_address(&mut self, dst_addr: IpAddress) -> Option<IpAddress> {
  1182. let v = dst_addr.version();
  1183. for cidr in self.ip_addrs.iter() {
  1184. let addr = cidr.address();
  1185. if addr.version() == v {
  1186. return Some(addr);
  1187. }
  1188. }
  1189. None
  1190. }
  1191. #[cfg(feature = "proto-ipv4")]
  1192. #[allow(unused)]
  1193. pub(crate) fn get_source_address_ipv4(
  1194. &mut self,
  1195. _dst_addr: Ipv4Address,
  1196. ) -> Option<Ipv4Address> {
  1197. for cidr in self.ip_addrs.iter() {
  1198. #[allow(irrefutable_let_patterns)] // if only ipv4 is enabled
  1199. if let IpCidr::Ipv4(cidr) = cidr {
  1200. return Some(cidr.address());
  1201. }
  1202. }
  1203. None
  1204. }
  1205. #[cfg(feature = "proto-ipv6")]
  1206. #[allow(unused)]
  1207. pub(crate) fn get_source_address_ipv6(
  1208. &mut self,
  1209. _dst_addr: Ipv6Address,
  1210. ) -> Option<Ipv6Address> {
  1211. for cidr in self.ip_addrs.iter() {
  1212. #[allow(irrefutable_let_patterns)] // if only ipv6 is enabled
  1213. if let IpCidr::Ipv6(cidr) = cidr {
  1214. return Some(cidr.address());
  1215. }
  1216. }
  1217. None
  1218. }
  1219. #[cfg(test)]
  1220. pub(crate) fn mock() -> Self {
  1221. Self {
  1222. caps: DeviceCapabilities {
  1223. #[cfg(feature = "medium-ethernet")]
  1224. medium: crate::phy::Medium::Ethernet,
  1225. #[cfg(not(feature = "medium-ethernet"))]
  1226. medium: crate::phy::Medium::Ip,
  1227. checksum: crate::phy::ChecksumCapabilities {
  1228. #[cfg(feature = "proto-ipv4")]
  1229. icmpv4: crate::phy::Checksum::Both,
  1230. #[cfg(feature = "proto-ipv6")]
  1231. icmpv6: crate::phy::Checksum::Both,
  1232. ipv4: crate::phy::Checksum::Both,
  1233. tcp: crate::phy::Checksum::Both,
  1234. udp: crate::phy::Checksum::Both,
  1235. },
  1236. max_burst_size: None,
  1237. #[cfg(feature = "medium-ethernet")]
  1238. max_transmission_unit: 1514,
  1239. #[cfg(not(feature = "medium-ethernet"))]
  1240. max_transmission_unit: 1500,
  1241. },
  1242. now: Instant::from_millis_const(0),
  1243. ip_addrs: ManagedSlice::Owned(vec![
  1244. #[cfg(feature = "proto-ipv4")]
  1245. IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address::new(192, 168, 1, 1), 24)),
  1246. #[cfg(feature = "proto-ipv6")]
  1247. IpCidr::Ipv6(Ipv6Cidr::new(
  1248. Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),
  1249. 64,
  1250. )),
  1251. ]),
  1252. rand: Rand::new(1234),
  1253. routes: Routes::new(&mut [][..]),
  1254. #[cfg(feature = "proto-ipv4")]
  1255. any_ip: false,
  1256. #[cfg(feature = "medium-ieee802154")]
  1257. pan_id: Some(crate::wire::Ieee802154Pan(0xabcd)),
  1258. #[cfg(feature = "medium-ieee802154")]
  1259. sequence_no: 1,
  1260. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1261. tag: 1,
  1262. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1263. hardware_addr: Some(crate::wire::HardwareAddress::Ethernet(
  1264. crate::wire::EthernetAddress([0x02, 0x02, 0x02, 0x02, 0x02, 0x02]),
  1265. )),
  1266. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1267. neighbor_cache: None,
  1268. #[cfg(feature = "proto-igmp")]
  1269. igmp_report_state: IgmpReportState::Inactive,
  1270. #[cfg(feature = "proto-igmp")]
  1271. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  1272. }
  1273. }
  1274. #[cfg(test)]
  1275. #[allow(unused)] // unused depending on which sockets are enabled
  1276. pub(crate) fn set_now(&mut self, now: Instant) {
  1277. self.now = now
  1278. }
  1279. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1280. fn check_hardware_addr(addr: &HardwareAddress) {
  1281. if !addr.is_unicast() {
  1282. panic!("Ethernet address {} is not unicast", addr)
  1283. }
  1284. }
  1285. fn check_ip_addrs(addrs: &[IpCidr]) {
  1286. for cidr in addrs {
  1287. if !cidr.address().is_unicast() && !cidr.address().is_unspecified() {
  1288. panic!("IP address {} is not unicast", cidr.address())
  1289. }
  1290. }
  1291. }
  1292. #[cfg(feature = "medium-ieee802154")]
  1293. fn get_sequence_number(&mut self) -> u8 {
  1294. let no = self.sequence_no;
  1295. self.sequence_no = self.sequence_no.wrapping_add(1);
  1296. no
  1297. }
  1298. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1299. fn get_sixlowpan_fragment_tag(&mut self) -> u16 {
  1300. let tag = self.tag;
  1301. self.tag = self.tag.wrapping_add(1);
  1302. tag
  1303. }
  1304. /// Determine if the given `Ipv6Address` is the solicited node
  1305. /// multicast address for a IPv6 addresses assigned to the interface.
  1306. /// See [RFC 4291 § 2.7.1] for more details.
  1307. ///
  1308. /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
  1309. #[cfg(feature = "proto-ipv6")]
  1310. pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool {
  1311. self.ip_addrs.iter().any(|cidr| {
  1312. match *cidr {
  1313. IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK => {
  1314. // Take the lower order 24 bits of the IPv6 address and
  1315. // append those bits to FF02:0:0:0:0:1:FF00::/104.
  1316. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..]
  1317. }
  1318. _ => false,
  1319. }
  1320. })
  1321. }
  1322. /// Check whether the interface has the given IP address assigned.
  1323. fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1324. let addr = addr.into();
  1325. self.ip_addrs.iter().any(|probe| probe.address() == addr)
  1326. }
  1327. /// Get the first IPv4 address of the interface.
  1328. #[cfg(feature = "proto-ipv4")]
  1329. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  1330. self.ip_addrs.iter().find_map(|addr| match *addr {
  1331. IpCidr::Ipv4(cidr) => Some(cidr.address()),
  1332. #[cfg(feature = "proto-ipv6")]
  1333. IpCidr::Ipv6(_) => None,
  1334. })
  1335. }
  1336. /// Check whether the interface listens to given destination multicast IP address.
  1337. ///
  1338. /// If built without feature `proto-igmp` this function will
  1339. /// always return `false`.
  1340. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1341. match addr.into() {
  1342. #[cfg(feature = "proto-igmp")]
  1343. IpAddress::Ipv4(key) => {
  1344. key == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1345. || self.ipv4_multicast_groups.get(&key).is_some()
  1346. }
  1347. #[allow(unreachable_patterns)]
  1348. _ => false,
  1349. }
  1350. }
  1351. #[cfg(feature = "medium-ethernet")]
  1352. fn process_ethernet<'frame, T: AsRef<[u8]>>(
  1353. &mut self,
  1354. sockets: &mut SocketSet,
  1355. frame: &'frame T,
  1356. _fragments: &'frame mut FragmentsBuffer<'a>,
  1357. ) -> Option<EthernetPacket<'frame>> {
  1358. let eth_frame = check!(EthernetFrame::new_checked(frame));
  1359. // Ignore any packets not directed to our hardware address or any of the multicast groups.
  1360. if !eth_frame.dst_addr().is_broadcast()
  1361. && !eth_frame.dst_addr().is_multicast()
  1362. && HardwareAddress::Ethernet(eth_frame.dst_addr()) != self.hardware_addr.unwrap()
  1363. {
  1364. return None;
  1365. }
  1366. match eth_frame.ethertype() {
  1367. #[cfg(feature = "proto-ipv4")]
  1368. EthernetProtocol::Arp => self.process_arp(self.now, &eth_frame),
  1369. #[cfg(feature = "proto-ipv4")]
  1370. EthernetProtocol::Ipv4 => {
  1371. let ipv4_packet = check!(Ipv4Packet::new_checked(eth_frame.payload()));
  1372. cfg_if::cfg_if! {
  1373. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1374. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1375. .map(EthernetPacket::Ip) } else {
  1376. self.process_ipv4(sockets, &ipv4_packet, None).map(EthernetPacket::Ip)
  1377. }
  1378. }
  1379. }
  1380. #[cfg(feature = "proto-ipv6")]
  1381. EthernetProtocol::Ipv6 => {
  1382. let ipv6_packet = check!(Ipv6Packet::new_checked(eth_frame.payload()));
  1383. self.process_ipv6(sockets, &ipv6_packet)
  1384. .map(EthernetPacket::Ip)
  1385. }
  1386. // Drop all other traffic.
  1387. _ => None,
  1388. }
  1389. }
  1390. #[cfg(feature = "medium-ip")]
  1391. fn process_ip<'frame, T: AsRef<[u8]>>(
  1392. &mut self,
  1393. sockets: &mut SocketSet,
  1394. ip_payload: &'frame T,
  1395. _fragments: &'frame mut FragmentsBuffer<'a>,
  1396. ) -> Option<IpPacket<'frame>> {
  1397. match IpVersion::of_packet(ip_payload.as_ref()) {
  1398. #[cfg(feature = "proto-ipv4")]
  1399. Ok(IpVersion::Ipv4) => {
  1400. let ipv4_packet = check!(Ipv4Packet::new_checked(ip_payload));
  1401. cfg_if::cfg_if! {
  1402. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1403. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1404. } else {
  1405. self.process_ipv4(sockets, &ipv4_packet, None)
  1406. }
  1407. }
  1408. }
  1409. #[cfg(feature = "proto-ipv6")]
  1410. Ok(IpVersion::Ipv6) => {
  1411. let ipv6_packet = check!(Ipv6Packet::new_checked(ip_payload));
  1412. self.process_ipv6(sockets, &ipv6_packet)
  1413. }
  1414. // Drop all other traffic.
  1415. _ => None,
  1416. }
  1417. }
  1418. #[cfg(feature = "medium-ieee802154")]
  1419. fn process_ieee802154<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1420. &mut self,
  1421. sockets: &mut SocketSet,
  1422. sixlowpan_payload: &'payload T,
  1423. _fragments: &'output mut FragmentsBuffer<'a>,
  1424. ) -> Option<IpPacket<'output>> {
  1425. let ieee802154_frame = check!(Ieee802154Frame::new_checked(sixlowpan_payload));
  1426. let ieee802154_repr = check!(Ieee802154Repr::parse(&ieee802154_frame));
  1427. if ieee802154_repr.frame_type != Ieee802154FrameType::Data {
  1428. return None;
  1429. }
  1430. // Drop frames when the user has set a PAN id and the PAN id from frame is not equal to this
  1431. // When the user didn't set a PAN id (so it is None), then we accept all PAN id's.
  1432. // We always accept the broadcast PAN id.
  1433. if self.pan_id.is_some()
  1434. && ieee802154_repr.dst_pan_id != self.pan_id
  1435. && ieee802154_repr.dst_pan_id != Some(Ieee802154Pan::BROADCAST)
  1436. {
  1437. net_debug!(
  1438. "IEEE802.15.4: dropping {:?} because not our PAN id (or not broadcast)",
  1439. ieee802154_repr
  1440. );
  1441. return None;
  1442. }
  1443. match ieee802154_frame.payload() {
  1444. Some(payload) => {
  1445. cfg_if::cfg_if! {
  1446. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  1447. self.process_sixlowpan(sockets, &ieee802154_repr, payload, Some((&mut _fragments.sixlowpan_fragments, _fragments.sixlowpan_fragments_cache_timeout)))
  1448. } else {
  1449. self.process_sixlowpan(sockets, &ieee802154_repr, payload, None)
  1450. }
  1451. }
  1452. }
  1453. None => None,
  1454. }
  1455. }
  1456. #[cfg(feature = "proto-sixlowpan")]
  1457. fn process_sixlowpan<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1458. &mut self,
  1459. sockets: &mut SocketSet,
  1460. ieee802154_repr: &Ieee802154Repr,
  1461. payload: &'payload T,
  1462. _fragments: Option<(
  1463. &'output mut PacketAssemblerSet<'a, SixlowpanFragKey>,
  1464. Duration,
  1465. )>,
  1466. ) -> Option<IpPacket<'output>> {
  1467. let payload = match check!(SixlowpanPacket::dispatch(payload)) {
  1468. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  1469. SixlowpanPacket::FragmentHeader => {
  1470. net_debug!("Fragmentation is not supported, use the `proto-sixlowpan-fragmentation` feature to add support.");
  1471. return None;
  1472. }
  1473. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1474. SixlowpanPacket::FragmentHeader => {
  1475. let (fragments, timeout) = _fragments.unwrap();
  1476. // We have a fragment header, which means we cannot process the 6LoWPAN packet,
  1477. // unless we have a complete one after processing this fragment.
  1478. let frag = check!(SixlowpanFragPacket::new_checked(payload));
  1479. // The key specifies to which 6LoWPAN fragment it belongs too.
  1480. // It is based on the link layer addresses, the tag and the size.
  1481. let key = frag.get_key(ieee802154_repr);
  1482. // The offset of this fragment in increments of 8 octets.
  1483. let offset = frag.datagram_offset() as usize * 8;
  1484. if frag.is_first_fragment() {
  1485. // The first fragment contains the total size of the IPv6 packet.
  1486. // However, we received a packet that is compressed following the 6LoWPAN
  1487. // standard. This means we need to convert the IPv6 packet size to a 6LoWPAN
  1488. // packet size. The packet size can be different because of first the
  1489. // compression of the IP header and when UDP is used (because the UDP header
  1490. // can also be compressed). Other headers are not compressed by 6LoWPAN.
  1491. let iphc = check!(SixlowpanIphcPacket::new_checked(frag.payload()));
  1492. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1493. &iphc,
  1494. ieee802154_repr.src_addr,
  1495. ieee802154_repr.dst_addr,
  1496. ));
  1497. // The uncompressed header size always starts with 40, since this is the size
  1498. // of a IPv6 header.
  1499. let mut uncompressed_header_size = 40;
  1500. let mut compressed_header_size = iphc.header_len();
  1501. // We need to check if we have an UDP packet, since this header can also be
  1502. // compressed by 6LoWPAN. We currently don't support extension headers yet.
  1503. match iphc_repr.next_header {
  1504. SixlowpanNextHeader::Compressed => {
  1505. match check!(SixlowpanNhcPacket::dispatch(iphc.payload())) {
  1506. SixlowpanNhcPacket::ExtHeader => {
  1507. net_debug!("6LoWPAN: extension headers not supported");
  1508. return None;
  1509. }
  1510. SixlowpanNhcPacket::UdpHeader => {
  1511. let udp_packet =
  1512. check!(SixlowpanUdpNhcPacket::new_checked(iphc.payload()));
  1513. uncompressed_header_size += 8;
  1514. compressed_header_size +=
  1515. 1 + udp_packet.ports_size() + udp_packet.checksum_size();
  1516. }
  1517. }
  1518. }
  1519. SixlowpanNextHeader::Uncompressed(_) => (),
  1520. }
  1521. // We reserve a spot in the packet assembler set and add the required
  1522. // information to the packet assembler.
  1523. // This information is the total size of the packet when it is fully assmbled.
  1524. // We also pass the header size, since this is needed when other fragments
  1525. // (other than the first one) are added.
  1526. check!(check!(fragments.reserve_with_key(&key)).start(
  1527. Some(
  1528. frag.datagram_size() as usize - uncompressed_header_size
  1529. + compressed_header_size
  1530. ),
  1531. self.now + timeout,
  1532. -((uncompressed_header_size - compressed_header_size) as isize),
  1533. ));
  1534. }
  1535. let frags = check!(fragments.get_packet_assembler_mut(&key));
  1536. net_trace!("6LoWPAN: received packet fragment");
  1537. // Add the fragment to the packet assembler.
  1538. match frags.add(frag.payload(), offset) {
  1539. Ok(true) => {
  1540. net_trace!("6LoWPAN: fragmented packet now complete");
  1541. check!(fragments.get_assembled_packet(&key))
  1542. }
  1543. Ok(false) => {
  1544. return None;
  1545. }
  1546. Err(Error::PacketAssemblerOverlap) => {
  1547. net_trace!("6LoWPAN: overlap in packet");
  1548. frags.mark_discarded();
  1549. return None;
  1550. }
  1551. Err(_) => return None,
  1552. }
  1553. }
  1554. SixlowpanPacket::IphcHeader => payload.as_ref(),
  1555. };
  1556. // At this point we should have a valid 6LoWPAN packet.
  1557. // The first header needs to be an IPHC header.
  1558. let iphc_packet = check!(SixlowpanIphcPacket::new_checked(payload));
  1559. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1560. &iphc_packet,
  1561. ieee802154_repr.src_addr,
  1562. ieee802154_repr.dst_addr,
  1563. ));
  1564. let payload = iphc_packet.payload();
  1565. let mut ipv6_repr = Ipv6Repr {
  1566. src_addr: iphc_repr.src_addr,
  1567. dst_addr: iphc_repr.dst_addr,
  1568. hop_limit: iphc_repr.hop_limit,
  1569. next_header: IpProtocol::Unknown(0),
  1570. payload_len: 40,
  1571. };
  1572. match iphc_repr.next_header {
  1573. SixlowpanNextHeader::Compressed => {
  1574. match check!(SixlowpanNhcPacket::dispatch(payload)) {
  1575. SixlowpanNhcPacket::ExtHeader => {
  1576. net_debug!("Extension headers are currently not supported for 6LoWPAN");
  1577. None
  1578. }
  1579. #[cfg(not(feature = "socket-udp"))]
  1580. SixlowpanNhcPacket::UdpHeader => {
  1581. net_debug!("UDP support is disabled, enable cargo feature `socket-udp`.");
  1582. None
  1583. }
  1584. #[cfg(feature = "socket-udp")]
  1585. SixlowpanNhcPacket::UdpHeader => {
  1586. let udp_packet = check!(SixlowpanUdpNhcPacket::new_checked(payload));
  1587. ipv6_repr.next_header = IpProtocol::Udp;
  1588. ipv6_repr.payload_len += 8 + udp_packet.payload().len();
  1589. let udp_repr = check!(SixlowpanUdpNhcRepr::parse(
  1590. &udp_packet,
  1591. &iphc_repr.src_addr,
  1592. &iphc_repr.dst_addr,
  1593. ));
  1594. // Look for UDP sockets that will accept the UDP packet.
  1595. // If it does not accept the packet, then send an ICMP message.
  1596. //
  1597. // NOTE(thvdveld): this is currently the same code as in self.process_udp.
  1598. // However, we cannot use that one because the payload passed to it is a
  1599. // normal IPv6 UDP payload, which is not what we have here.
  1600. for udp_socket in sockets
  1601. .items_mut()
  1602. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  1603. {
  1604. if udp_socket.accepts(self, &IpRepr::Ipv6(ipv6_repr), &udp_repr) {
  1605. udp_socket.process(
  1606. self,
  1607. &IpRepr::Ipv6(ipv6_repr),
  1608. &udp_repr,
  1609. udp_packet.payload(),
  1610. );
  1611. return None;
  1612. }
  1613. }
  1614. // When we are here then then there was no UDP socket that accepted the UDP
  1615. // message.
  1616. let payload_len = icmp_reply_payload_len(
  1617. payload.len(),
  1618. IPV6_MIN_MTU,
  1619. ipv6_repr.buffer_len(),
  1620. );
  1621. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  1622. reason: Icmpv6DstUnreachable::PortUnreachable,
  1623. header: ipv6_repr,
  1624. data: &payload[0..payload_len],
  1625. };
  1626. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  1627. }
  1628. }
  1629. }
  1630. SixlowpanNextHeader::Uncompressed(nxt_hdr) => match nxt_hdr {
  1631. IpProtocol::Icmpv6 => {
  1632. ipv6_repr.next_header = IpProtocol::Icmpv6;
  1633. self.process_icmpv6(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1634. }
  1635. #[cfg(feature = "socket-tcp")]
  1636. IpProtocol::Tcp => {
  1637. ipv6_repr.next_header = nxt_hdr;
  1638. ipv6_repr.payload_len += payload.len();
  1639. self.process_tcp(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1640. }
  1641. proto => {
  1642. net_debug!("6LoWPAN: {} currently not supported", proto);
  1643. None
  1644. }
  1645. },
  1646. }
  1647. }
  1648. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  1649. fn process_arp<'frame, T: AsRef<[u8]>>(
  1650. &mut self,
  1651. timestamp: Instant,
  1652. eth_frame: &EthernetFrame<&'frame T>,
  1653. ) -> Option<EthernetPacket<'frame>> {
  1654. let arp_packet = check!(ArpPacket::new_checked(eth_frame.payload()));
  1655. let arp_repr = check!(ArpRepr::parse(&arp_packet));
  1656. match arp_repr {
  1657. ArpRepr::EthernetIpv4 {
  1658. operation,
  1659. source_hardware_addr,
  1660. source_protocol_addr,
  1661. target_protocol_addr,
  1662. ..
  1663. } => {
  1664. // Only process ARP packets for us.
  1665. if !self.has_ip_addr(target_protocol_addr) {
  1666. return None;
  1667. }
  1668. // Only process REQUEST and RESPONSE.
  1669. if let ArpOperation::Unknown(_) = operation {
  1670. net_debug!("arp: unknown operation code");
  1671. return None;
  1672. }
  1673. // Discard packets with non-unicast source addresses.
  1674. if !source_protocol_addr.is_unicast() || !source_hardware_addr.is_unicast() {
  1675. net_debug!("arp: non-unicast source address");
  1676. return None;
  1677. }
  1678. if !self.in_same_network(&IpAddress::Ipv4(source_protocol_addr)) {
  1679. net_debug!("arp: source IP address not in same network as us");
  1680. return None;
  1681. }
  1682. // Fill the ARP cache from any ARP packet aimed at us (both request or response).
  1683. // We fill from requests too because if someone is requesting our address they
  1684. // are probably going to talk to us, so we avoid having to request their address
  1685. // when we later reply to them.
  1686. self.neighbor_cache.as_mut().unwrap().fill(
  1687. source_protocol_addr.into(),
  1688. source_hardware_addr.into(),
  1689. timestamp,
  1690. );
  1691. if operation == ArpOperation::Request {
  1692. let src_hardware_addr = match self.hardware_addr {
  1693. Some(HardwareAddress::Ethernet(addr)) => addr,
  1694. _ => unreachable!(),
  1695. };
  1696. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  1697. operation: ArpOperation::Reply,
  1698. source_hardware_addr: src_hardware_addr,
  1699. source_protocol_addr: target_protocol_addr,
  1700. target_hardware_addr: source_hardware_addr,
  1701. target_protocol_addr: source_protocol_addr,
  1702. }))
  1703. } else {
  1704. None
  1705. }
  1706. }
  1707. }
  1708. }
  1709. #[cfg(feature = "socket-raw")]
  1710. fn raw_socket_filter<'frame>(
  1711. &mut self,
  1712. sockets: &mut SocketSet,
  1713. ip_repr: &IpRepr,
  1714. ip_payload: &'frame [u8],
  1715. ) -> bool {
  1716. let mut handled_by_raw_socket = false;
  1717. // Pass every IP packet to all raw sockets we have registered.
  1718. for raw_socket in sockets
  1719. .items_mut()
  1720. .filter_map(|i| raw::Socket::downcast_mut(&mut i.socket))
  1721. {
  1722. if raw_socket.accepts(ip_repr) {
  1723. raw_socket.process(self, ip_repr, ip_payload);
  1724. handled_by_raw_socket = true;
  1725. }
  1726. }
  1727. handled_by_raw_socket
  1728. }
  1729. #[cfg(feature = "proto-ipv6")]
  1730. fn process_ipv6<'frame, T: AsRef<[u8]> + ?Sized>(
  1731. &mut self,
  1732. sockets: &mut SocketSet,
  1733. ipv6_packet: &Ipv6Packet<&'frame T>,
  1734. ) -> Option<IpPacket<'frame>> {
  1735. let ipv6_repr = check!(Ipv6Repr::parse(ipv6_packet));
  1736. if !ipv6_repr.src_addr.is_unicast() {
  1737. // Discard packets with non-unicast source addresses.
  1738. net_debug!("non-unicast source address");
  1739. return None;
  1740. }
  1741. let ip_payload = ipv6_packet.payload();
  1742. #[cfg(feature = "socket-raw")]
  1743. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ipv6_repr.into(), ip_payload);
  1744. #[cfg(not(feature = "socket-raw"))]
  1745. let handled_by_raw_socket = false;
  1746. self.process_nxt_hdr(
  1747. sockets,
  1748. ipv6_repr,
  1749. ipv6_repr.next_header,
  1750. handled_by_raw_socket,
  1751. ip_payload,
  1752. )
  1753. }
  1754. /// Given the next header value forward the payload onto the correct process
  1755. /// function.
  1756. #[cfg(feature = "proto-ipv6")]
  1757. fn process_nxt_hdr<'frame>(
  1758. &mut self,
  1759. sockets: &mut SocketSet,
  1760. ipv6_repr: Ipv6Repr,
  1761. nxt_hdr: IpProtocol,
  1762. handled_by_raw_socket: bool,
  1763. ip_payload: &'frame [u8],
  1764. ) -> Option<IpPacket<'frame>> {
  1765. match nxt_hdr {
  1766. IpProtocol::Icmpv6 => self.process_icmpv6(sockets, ipv6_repr.into(), ip_payload),
  1767. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1768. IpProtocol::Udp => {
  1769. self.process_udp(sockets, ipv6_repr.into(), handled_by_raw_socket, ip_payload)
  1770. }
  1771. #[cfg(feature = "socket-tcp")]
  1772. IpProtocol::Tcp => self.process_tcp(sockets, ipv6_repr.into(), ip_payload),
  1773. IpProtocol::HopByHop => {
  1774. self.process_hopbyhop(sockets, ipv6_repr, handled_by_raw_socket, ip_payload)
  1775. }
  1776. #[cfg(feature = "socket-raw")]
  1777. _ if handled_by_raw_socket => None,
  1778. _ => {
  1779. // Send back as much of the original payload as we can.
  1780. let payload_len =
  1781. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  1782. let icmp_reply_repr = Icmpv6Repr::ParamProblem {
  1783. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  1784. // The offending packet is after the IPv6 header.
  1785. pointer: ipv6_repr.buffer_len() as u32,
  1786. header: ipv6_repr,
  1787. data: &ip_payload[0..payload_len],
  1788. };
  1789. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  1790. }
  1791. }
  1792. }
  1793. #[cfg(feature = "proto-ipv4")]
  1794. fn process_ipv4<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1795. &mut self,
  1796. sockets: &mut SocketSet,
  1797. ipv4_packet: &Ipv4Packet<&'payload T>,
  1798. _fragments: Option<&'output mut PacketAssemblerSet<'a, Ipv4FragKey>>,
  1799. ) -> Option<IpPacket<'output>> {
  1800. let ipv4_repr = check!(Ipv4Repr::parse(ipv4_packet, &self.caps.checksum));
  1801. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  1802. // Discard packets with non-unicast source addresses.
  1803. net_debug!("non-unicast source address");
  1804. return None;
  1805. }
  1806. #[cfg(feature = "proto-ipv4-fragmentation")]
  1807. let ip_payload = {
  1808. const REASSEMBLY_TIMEOUT: u64 = 90;
  1809. let fragments = _fragments.unwrap();
  1810. if ipv4_packet.more_frags() || ipv4_packet.frag_offset() != 0 {
  1811. let key = ipv4_packet.get_key();
  1812. let f = match fragments.get_packet_assembler_mut(&key) {
  1813. Ok(f) => f,
  1814. Err(_) => {
  1815. check!(check!(fragments.reserve_with_key(&key)).start(
  1816. None,
  1817. self.now + Duration::from_secs(REASSEMBLY_TIMEOUT),
  1818. 0,
  1819. ));
  1820. check!(fragments.get_packet_assembler_mut(&key))
  1821. }
  1822. };
  1823. if !ipv4_packet.more_frags() {
  1824. // This is the last fragment, so we know the total size
  1825. check!(f.set_total_size(
  1826. ipv4_packet.total_len() as usize - ipv4_packet.header_len() as usize
  1827. + ipv4_packet.frag_offset() as usize,
  1828. ));
  1829. }
  1830. match f.add(ipv4_packet.payload(), ipv4_packet.frag_offset() as usize) {
  1831. Ok(true) => {
  1832. // NOTE: according to the standard, the total length needs to be
  1833. // recomputed, as well as the checksum. However, we don't really use
  1834. // the IPv4 header after the packet is reassembled.
  1835. check!(fragments.get_assembled_packet(&key))
  1836. }
  1837. Ok(false) => {
  1838. return None;
  1839. }
  1840. Err(Error::PacketAssemblerOverlap) => {
  1841. return None;
  1842. }
  1843. Err(e) => {
  1844. net_debug!("fragmentation error: {}", e);
  1845. return None;
  1846. }
  1847. }
  1848. } else {
  1849. ipv4_packet.payload()
  1850. }
  1851. };
  1852. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  1853. let ip_payload = ipv4_packet.payload();
  1854. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  1855. #[cfg(feature = "socket-raw")]
  1856. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);
  1857. #[cfg(not(feature = "socket-raw"))]
  1858. let handled_by_raw_socket = false;
  1859. #[cfg(feature = "socket-dhcpv4")]
  1860. {
  1861. if ipv4_repr.next_header == IpProtocol::Udp && self.hardware_addr.is_some() {
  1862. // First check for source and dest ports, then do `UdpRepr::parse` if they match.
  1863. // This way we avoid validating the UDP checksum twice for all non-DHCP UDP packets (one here, one in `process_udp`)
  1864. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  1865. if udp_packet.src_port() == DHCP_SERVER_PORT
  1866. && udp_packet.dst_port() == DHCP_CLIENT_PORT
  1867. {
  1868. if let Some(dhcp_socket) = sockets
  1869. .items_mut()
  1870. .find_map(|i| dhcpv4::Socket::downcast_mut(&mut i.socket))
  1871. {
  1872. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  1873. let udp_repr = check!(UdpRepr::parse(
  1874. &udp_packet,
  1875. &src_addr,
  1876. &dst_addr,
  1877. &self.caps.checksum
  1878. ));
  1879. let udp_payload = udp_packet.payload();
  1880. dhcp_socket.process(self, &ipv4_repr, &udp_repr, udp_payload);
  1881. return None;
  1882. }
  1883. }
  1884. }
  1885. }
  1886. if !self.has_ip_addr(ipv4_repr.dst_addr)
  1887. && !self.has_multicast_group(ipv4_repr.dst_addr)
  1888. && !self.is_broadcast_v4(ipv4_repr.dst_addr)
  1889. {
  1890. // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups.
  1891. // If AnyIP is enabled, also check if the packet is routed locally.
  1892. if !self.any_ip
  1893. || !ipv4_repr.dst_addr.is_unicast()
  1894. || self
  1895. .routes
  1896. .lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), self.now)
  1897. .map_or(true, |router_addr| !self.has_ip_addr(router_addr))
  1898. {
  1899. return None;
  1900. }
  1901. }
  1902. match ipv4_repr.next_header {
  1903. IpProtocol::Icmp => self.process_icmpv4(sockets, ip_repr, ip_payload),
  1904. #[cfg(feature = "proto-igmp")]
  1905. IpProtocol::Igmp => self.process_igmp(ipv4_repr, ip_payload),
  1906. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1907. IpProtocol::Udp => {
  1908. self.process_udp(sockets, ip_repr, handled_by_raw_socket, ip_payload)
  1909. }
  1910. #[cfg(feature = "socket-tcp")]
  1911. IpProtocol::Tcp => self.process_tcp(sockets, ip_repr, ip_payload),
  1912. _ if handled_by_raw_socket => None,
  1913. _ => {
  1914. // Send back as much of the original payload as we can.
  1915. let payload_len =
  1916. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  1917. let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
  1918. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  1919. header: ipv4_repr,
  1920. data: &ip_payload[0..payload_len],
  1921. };
  1922. self.icmpv4_reply(ipv4_repr, icmp_reply_repr)
  1923. }
  1924. }
  1925. }
  1926. /// Checks if an incoming packet has a broadcast address for the interfaces
  1927. /// associated ipv4 addresses.
  1928. #[cfg(feature = "proto-ipv4")]
  1929. fn is_subnet_broadcast(&self, address: Ipv4Address) -> bool {
  1930. self.ip_addrs
  1931. .iter()
  1932. .filter_map(|own_cidr| match own_cidr {
  1933. IpCidr::Ipv4(own_ip) => Some(own_ip.broadcast()?),
  1934. #[cfg(feature = "proto-ipv6")]
  1935. IpCidr::Ipv6(_) => None,
  1936. })
  1937. .any(|broadcast_address| address == broadcast_address)
  1938. }
  1939. /// Checks if an ipv4 address is broadcast, taking into account subnet broadcast addresses
  1940. #[cfg(feature = "proto-ipv4")]
  1941. fn is_broadcast_v4(&self, address: Ipv4Address) -> bool {
  1942. address.is_broadcast() || self.is_subnet_broadcast(address)
  1943. }
  1944. /// Checks if an ipv4 address is unicast, taking into account subnet broadcast addresses
  1945. #[cfg(feature = "proto-ipv4")]
  1946. fn is_unicast_v4(&self, address: Ipv4Address) -> bool {
  1947. address.is_unicast() && !self.is_subnet_broadcast(address)
  1948. }
  1949. /// Host duties of the **IGMPv2** protocol.
  1950. ///
  1951. /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries.
  1952. /// Membership must not be reported immediately in order to avoid flooding the network
  1953. /// after a query is broadcasted by a router; this is not currently done.
  1954. #[cfg(feature = "proto-igmp")]
  1955. fn process_igmp<'frame>(
  1956. &mut self,
  1957. ipv4_repr: Ipv4Repr,
  1958. ip_payload: &'frame [u8],
  1959. ) -> Option<IpPacket<'frame>> {
  1960. let igmp_packet = check!(IgmpPacket::new_checked(ip_payload));
  1961. let igmp_repr = check!(IgmpRepr::parse(&igmp_packet));
  1962. // FIXME: report membership after a delay
  1963. match igmp_repr {
  1964. IgmpRepr::MembershipQuery {
  1965. group_addr,
  1966. version,
  1967. max_resp_time,
  1968. } => {
  1969. // General query
  1970. if group_addr.is_unspecified()
  1971. && ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1972. {
  1973. // Are we member in any groups?
  1974. if self.ipv4_multicast_groups.iter().next().is_some() {
  1975. let interval = match version {
  1976. IgmpVersion::Version1 => Duration::from_millis(100),
  1977. IgmpVersion::Version2 => {
  1978. // No dependence on a random generator
  1979. // (see [#24](https://github.com/m-labs/smoltcp/issues/24))
  1980. // but at least spread reports evenly across max_resp_time.
  1981. let intervals = self.ipv4_multicast_groups.len() as u32 + 1;
  1982. max_resp_time / intervals
  1983. }
  1984. };
  1985. self.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1986. version,
  1987. timeout: self.now + interval,
  1988. interval,
  1989. next_index: 0,
  1990. };
  1991. }
  1992. } else {
  1993. // Group-specific query
  1994. if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr {
  1995. // Don't respond immediately
  1996. let timeout = max_resp_time / 4;
  1997. self.igmp_report_state = IgmpReportState::ToSpecificQuery {
  1998. version,
  1999. timeout: self.now + timeout,
  2000. group: group_addr,
  2001. };
  2002. }
  2003. }
  2004. }
  2005. // Ignore membership reports
  2006. IgmpRepr::MembershipReport { .. } => (),
  2007. // Ignore hosts leaving groups
  2008. IgmpRepr::LeaveGroup { .. } => (),
  2009. }
  2010. None
  2011. }
  2012. #[cfg(feature = "proto-ipv6")]
  2013. fn process_icmpv6<'frame>(
  2014. &mut self,
  2015. _sockets: &mut SocketSet,
  2016. ip_repr: IpRepr,
  2017. ip_payload: &'frame [u8],
  2018. ) -> Option<IpPacket<'frame>> {
  2019. let icmp_packet = check!(Icmpv6Packet::new_checked(ip_payload));
  2020. let icmp_repr = check!(Icmpv6Repr::parse(
  2021. &ip_repr.src_addr(),
  2022. &ip_repr.dst_addr(),
  2023. &icmp_packet,
  2024. &self.caps.checksum,
  2025. ));
  2026. #[cfg(feature = "socket-icmp")]
  2027. let mut handled_by_icmp_socket = false;
  2028. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))]
  2029. for icmp_socket in _sockets
  2030. .items_mut()
  2031. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2032. {
  2033. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2034. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2035. handled_by_icmp_socket = true;
  2036. }
  2037. }
  2038. match icmp_repr {
  2039. // Respond to echo requests.
  2040. Icmpv6Repr::EchoRequest {
  2041. ident,
  2042. seq_no,
  2043. data,
  2044. } => match ip_repr {
  2045. IpRepr::Ipv6(ipv6_repr) => {
  2046. let icmp_reply_repr = Icmpv6Repr::EchoReply {
  2047. ident,
  2048. seq_no,
  2049. data,
  2050. };
  2051. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  2052. }
  2053. #[allow(unreachable_patterns)]
  2054. _ => unreachable!(),
  2055. },
  2056. // Ignore any echo replies.
  2057. Icmpv6Repr::EchoReply { .. } => None,
  2058. // Forward any NDISC packets to the ndisc packet handler
  2059. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2060. Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr {
  2061. IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(ipv6_repr, repr),
  2062. #[allow(unreachable_patterns)]
  2063. _ => unreachable!(),
  2064. },
  2065. // Don't report an error if a packet with unknown type
  2066. // has been handled by an ICMP socket
  2067. #[cfg(feature = "socket-icmp")]
  2068. _ if handled_by_icmp_socket => None,
  2069. // FIXME: do something correct here?
  2070. _ => None,
  2071. }
  2072. }
  2073. #[cfg(all(
  2074. any(feature = "medium-ethernet", feature = "medium-ieee802154"),
  2075. feature = "proto-ipv6"
  2076. ))]
  2077. fn process_ndisc<'frame>(
  2078. &mut self,
  2079. ip_repr: Ipv6Repr,
  2080. repr: NdiscRepr<'frame>,
  2081. ) -> Option<IpPacket<'frame>> {
  2082. match repr {
  2083. NdiscRepr::NeighborAdvert {
  2084. lladdr,
  2085. target_addr,
  2086. flags,
  2087. } => {
  2088. let ip_addr = ip_repr.src_addr.into();
  2089. if let Some(lladdr) = lladdr {
  2090. let lladdr = check!(lladdr.parse(self.caps.medium));
  2091. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2092. return None;
  2093. }
  2094. if flags.contains(NdiscNeighborFlags::OVERRIDE)
  2095. || !self
  2096. .neighbor_cache
  2097. .as_mut()
  2098. .unwrap()
  2099. .lookup(&ip_addr, self.now)
  2100. .found()
  2101. {
  2102. self.neighbor_cache
  2103. .as_mut()
  2104. .unwrap()
  2105. .fill(ip_addr, lladdr, self.now)
  2106. }
  2107. }
  2108. None
  2109. }
  2110. NdiscRepr::NeighborSolicit {
  2111. target_addr,
  2112. lladdr,
  2113. ..
  2114. } => {
  2115. if let Some(lladdr) = lladdr {
  2116. let lladdr = check!(lladdr.parse(self.caps.medium));
  2117. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2118. return None;
  2119. }
  2120. self.neighbor_cache.as_mut().unwrap().fill(
  2121. ip_repr.src_addr.into(),
  2122. lladdr,
  2123. self.now,
  2124. );
  2125. }
  2126. if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) {
  2127. let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  2128. flags: NdiscNeighborFlags::SOLICITED,
  2129. target_addr,
  2130. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2131. lladdr: Some(self.hardware_addr.unwrap().into()),
  2132. });
  2133. let ip_repr = Ipv6Repr {
  2134. src_addr: target_addr,
  2135. dst_addr: ip_repr.src_addr,
  2136. next_header: IpProtocol::Icmpv6,
  2137. hop_limit: 0xff,
  2138. payload_len: advert.buffer_len(),
  2139. };
  2140. Some(IpPacket::Icmpv6((ip_repr, advert)))
  2141. } else {
  2142. None
  2143. }
  2144. }
  2145. _ => None,
  2146. }
  2147. }
  2148. #[cfg(feature = "proto-ipv6")]
  2149. fn process_hopbyhop<'frame>(
  2150. &mut self,
  2151. sockets: &mut SocketSet,
  2152. ipv6_repr: Ipv6Repr,
  2153. handled_by_raw_socket: bool,
  2154. ip_payload: &'frame [u8],
  2155. ) -> Option<IpPacket<'frame>> {
  2156. let hbh_pkt = check!(Ipv6HopByHopHeader::new_checked(ip_payload));
  2157. let hbh_repr = check!(Ipv6HopByHopRepr::parse(&hbh_pkt));
  2158. for opt_repr in hbh_repr.options() {
  2159. let opt_repr = check!(opt_repr);
  2160. match opt_repr {
  2161. Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (),
  2162. Ipv6OptionRepr::Unknown { type_, .. } => {
  2163. match Ipv6OptionFailureType::from(type_) {
  2164. Ipv6OptionFailureType::Skip => (),
  2165. Ipv6OptionFailureType::Discard => {
  2166. return None;
  2167. }
  2168. _ => {
  2169. // FIXME(dlrobertson): Send an ICMPv6 parameter problem message
  2170. // here.
  2171. return None;
  2172. }
  2173. }
  2174. }
  2175. }
  2176. }
  2177. self.process_nxt_hdr(
  2178. sockets,
  2179. ipv6_repr,
  2180. hbh_repr.next_header,
  2181. handled_by_raw_socket,
  2182. &ip_payload[hbh_repr.buffer_len()..],
  2183. )
  2184. }
  2185. #[cfg(feature = "proto-ipv4")]
  2186. fn process_icmpv4<'frame>(
  2187. &mut self,
  2188. _sockets: &mut SocketSet,
  2189. ip_repr: IpRepr,
  2190. ip_payload: &'frame [u8],
  2191. ) -> Option<IpPacket<'frame>> {
  2192. let icmp_packet = check!(Icmpv4Packet::new_checked(ip_payload));
  2193. let icmp_repr = check!(Icmpv4Repr::parse(&icmp_packet, &self.caps.checksum));
  2194. #[cfg(feature = "socket-icmp")]
  2195. let mut handled_by_icmp_socket = false;
  2196. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  2197. for icmp_socket in _sockets
  2198. .items_mut()
  2199. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2200. {
  2201. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2202. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2203. handled_by_icmp_socket = true;
  2204. }
  2205. }
  2206. match icmp_repr {
  2207. // Respond to echo requests.
  2208. #[cfg(feature = "proto-ipv4")]
  2209. Icmpv4Repr::EchoRequest {
  2210. ident,
  2211. seq_no,
  2212. data,
  2213. } => {
  2214. let icmp_reply_repr = Icmpv4Repr::EchoReply {
  2215. ident,
  2216. seq_no,
  2217. data,
  2218. };
  2219. match ip_repr {
  2220. IpRepr::Ipv4(ipv4_repr) => self.icmpv4_reply(ipv4_repr, icmp_reply_repr),
  2221. #[allow(unreachable_patterns)]
  2222. _ => unreachable!(),
  2223. }
  2224. }
  2225. // Ignore any echo replies.
  2226. Icmpv4Repr::EchoReply { .. } => None,
  2227. // Don't report an error if a packet with unknown type
  2228. // has been handled by an ICMP socket
  2229. #[cfg(feature = "socket-icmp")]
  2230. _ if handled_by_icmp_socket => None,
  2231. // FIXME: do something correct here?
  2232. _ => None,
  2233. }
  2234. }
  2235. #[cfg(feature = "proto-ipv4")]
  2236. fn icmpv4_reply<'frame, 'icmp: 'frame>(
  2237. &self,
  2238. ipv4_repr: Ipv4Repr,
  2239. icmp_repr: Icmpv4Repr<'icmp>,
  2240. ) -> Option<IpPacket<'frame>> {
  2241. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  2242. // Do not send ICMP replies to non-unicast sources
  2243. None
  2244. } else if self.is_unicast_v4(ipv4_repr.dst_addr) {
  2245. // Reply as normal when src_addr and dst_addr are both unicast
  2246. let ipv4_reply_repr = Ipv4Repr {
  2247. src_addr: ipv4_repr.dst_addr,
  2248. dst_addr: ipv4_repr.src_addr,
  2249. next_header: IpProtocol::Icmp,
  2250. payload_len: icmp_repr.buffer_len(),
  2251. hop_limit: 64,
  2252. };
  2253. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2254. } else if self.is_broadcast_v4(ipv4_repr.dst_addr) {
  2255. // Only reply to broadcasts for echo replies and not other ICMP messages
  2256. match icmp_repr {
  2257. Icmpv4Repr::EchoReply { .. } => match self.ipv4_address() {
  2258. Some(src_addr) => {
  2259. let ipv4_reply_repr = Ipv4Repr {
  2260. src_addr,
  2261. dst_addr: ipv4_repr.src_addr,
  2262. next_header: IpProtocol::Icmp,
  2263. payload_len: icmp_repr.buffer_len(),
  2264. hop_limit: 64,
  2265. };
  2266. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2267. }
  2268. None => None,
  2269. },
  2270. _ => None,
  2271. }
  2272. } else {
  2273. None
  2274. }
  2275. }
  2276. #[cfg(feature = "proto-ipv6")]
  2277. fn icmpv6_reply<'frame, 'icmp: 'frame>(
  2278. &self,
  2279. ipv6_repr: Ipv6Repr,
  2280. icmp_repr: Icmpv6Repr<'icmp>,
  2281. ) -> Option<IpPacket<'frame>> {
  2282. if ipv6_repr.dst_addr.is_unicast() {
  2283. let ipv6_reply_repr = Ipv6Repr {
  2284. src_addr: ipv6_repr.dst_addr,
  2285. dst_addr: ipv6_repr.src_addr,
  2286. next_header: IpProtocol::Icmpv6,
  2287. payload_len: icmp_repr.buffer_len(),
  2288. hop_limit: 64,
  2289. };
  2290. Some(IpPacket::Icmpv6((ipv6_reply_repr, icmp_repr)))
  2291. } else {
  2292. // Do not send any ICMP replies to a broadcast destination address.
  2293. None
  2294. }
  2295. }
  2296. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  2297. fn process_udp<'frame>(
  2298. &mut self,
  2299. sockets: &mut SocketSet,
  2300. ip_repr: IpRepr,
  2301. handled_by_raw_socket: bool,
  2302. ip_payload: &'frame [u8],
  2303. ) -> Option<IpPacket<'frame>> {
  2304. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2305. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  2306. let udp_repr = check!(UdpRepr::parse(
  2307. &udp_packet,
  2308. &src_addr,
  2309. &dst_addr,
  2310. &self.caps.checksum
  2311. ));
  2312. let udp_payload = udp_packet.payload();
  2313. #[cfg(feature = "socket-udp")]
  2314. for udp_socket in sockets
  2315. .items_mut()
  2316. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  2317. {
  2318. if udp_socket.accepts(self, &ip_repr, &udp_repr) {
  2319. udp_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2320. return None;
  2321. }
  2322. }
  2323. #[cfg(feature = "socket-dns")]
  2324. for dns_socket in sockets
  2325. .items_mut()
  2326. .filter_map(|i| dns::Socket::downcast_mut(&mut i.socket))
  2327. {
  2328. if dns_socket.accepts(&ip_repr, &udp_repr) {
  2329. dns_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2330. return None;
  2331. }
  2332. }
  2333. // The packet wasn't handled by a socket, send an ICMP port unreachable packet.
  2334. match ip_repr {
  2335. #[cfg(feature = "proto-ipv4")]
  2336. IpRepr::Ipv4(_) if handled_by_raw_socket => None,
  2337. #[cfg(feature = "proto-ipv6")]
  2338. IpRepr::Ipv6(_) if handled_by_raw_socket => None,
  2339. #[cfg(feature = "proto-ipv4")]
  2340. IpRepr::Ipv4(ipv4_repr) => {
  2341. let payload_len =
  2342. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  2343. let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable {
  2344. reason: Icmpv4DstUnreachable::PortUnreachable,
  2345. header: ipv4_repr,
  2346. data: &ip_payload[0..payload_len],
  2347. };
  2348. self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr)
  2349. }
  2350. #[cfg(feature = "proto-ipv6")]
  2351. IpRepr::Ipv6(ipv6_repr) => {
  2352. let payload_len =
  2353. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  2354. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  2355. reason: Icmpv6DstUnreachable::PortUnreachable,
  2356. header: ipv6_repr,
  2357. data: &ip_payload[0..payload_len],
  2358. };
  2359. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  2360. }
  2361. }
  2362. }
  2363. #[cfg(feature = "socket-tcp")]
  2364. fn process_tcp<'frame>(
  2365. &mut self,
  2366. sockets: &mut SocketSet,
  2367. ip_repr: IpRepr,
  2368. ip_payload: &'frame [u8],
  2369. ) -> Option<IpPacket<'frame>> {
  2370. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2371. let tcp_packet = check!(TcpPacket::new_checked(ip_payload));
  2372. let tcp_repr = check!(TcpRepr::parse(
  2373. &tcp_packet,
  2374. &src_addr,
  2375. &dst_addr,
  2376. &self.caps.checksum
  2377. ));
  2378. for tcp_socket in sockets
  2379. .items_mut()
  2380. .filter_map(|i| tcp::Socket::downcast_mut(&mut i.socket))
  2381. {
  2382. if tcp_socket.accepts(self, &ip_repr, &tcp_repr) {
  2383. return tcp_socket
  2384. .process(self, &ip_repr, &tcp_repr)
  2385. .map(IpPacket::Tcp);
  2386. }
  2387. }
  2388. if tcp_repr.control == TcpControl::Rst {
  2389. // Never reply to a TCP RST packet with another TCP RST packet.
  2390. None
  2391. } else {
  2392. // The packet wasn't handled by a socket, send a TCP RST packet.
  2393. Some(IpPacket::Tcp(tcp::Socket::rst_reply(&ip_repr, &tcp_repr)))
  2394. }
  2395. }
  2396. #[cfg(feature = "medium-ethernet")]
  2397. fn dispatch<Tx>(&mut self, tx_token: Tx, packet: EthernetPacket) -> Result<()>
  2398. where
  2399. Tx: TxToken,
  2400. {
  2401. match packet {
  2402. #[cfg(feature = "proto-ipv4")]
  2403. EthernetPacket::Arp(arp_repr) => {
  2404. let dst_hardware_addr = match arp_repr {
  2405. ArpRepr::EthernetIpv4 {
  2406. target_hardware_addr,
  2407. ..
  2408. } => target_hardware_addr,
  2409. };
  2410. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2411. frame.set_dst_addr(dst_hardware_addr);
  2412. frame.set_ethertype(EthernetProtocol::Arp);
  2413. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  2414. arp_repr.emit(&mut packet);
  2415. })
  2416. }
  2417. EthernetPacket::Ip(packet) => self.dispatch_ip(tx_token, packet, None),
  2418. }
  2419. }
  2420. #[cfg(feature = "medium-ethernet")]
  2421. fn dispatch_ethernet<Tx, F>(&mut self, tx_token: Tx, buffer_len: usize, f: F) -> Result<()>
  2422. where
  2423. Tx: TxToken,
  2424. F: FnOnce(EthernetFrame<&mut [u8]>),
  2425. {
  2426. let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len);
  2427. tx_token.consume(self.now, tx_len, |tx_buffer| {
  2428. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2429. let mut frame = EthernetFrame::new_unchecked(tx_buffer);
  2430. let src_addr = if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2431. addr
  2432. } else {
  2433. return Err(Error::Malformed);
  2434. };
  2435. frame.set_src_addr(src_addr);
  2436. f(frame);
  2437. Ok(())
  2438. })
  2439. }
  2440. fn in_same_network(&self, addr: &IpAddress) -> bool {
  2441. self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr))
  2442. }
  2443. fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result<IpAddress> {
  2444. // Send directly.
  2445. if self.in_same_network(addr) || addr.is_broadcast() {
  2446. return Ok(*addr);
  2447. }
  2448. // Route via a router.
  2449. match self.routes.lookup(addr, timestamp) {
  2450. Some(router_addr) => Ok(router_addr),
  2451. None => Err(Error::Unaddressable),
  2452. }
  2453. }
  2454. fn has_neighbor(&self, addr: &IpAddress) -> bool {
  2455. match self.route(addr, self.now) {
  2456. Ok(_routed_addr) => match self.caps.medium {
  2457. #[cfg(feature = "medium-ethernet")]
  2458. Medium::Ethernet => self
  2459. .neighbor_cache
  2460. .as_ref()
  2461. .unwrap()
  2462. .lookup(&_routed_addr, self.now)
  2463. .found(),
  2464. #[cfg(feature = "medium-ieee802154")]
  2465. Medium::Ieee802154 => self
  2466. .neighbor_cache
  2467. .as_ref()
  2468. .unwrap()
  2469. .lookup(&_routed_addr, self.now)
  2470. .found(),
  2471. #[cfg(feature = "medium-ip")]
  2472. Medium::Ip => true,
  2473. },
  2474. Err(_) => false,
  2475. }
  2476. }
  2477. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2478. fn lookup_hardware_addr<Tx>(
  2479. &mut self,
  2480. tx_token: Tx,
  2481. src_addr: &IpAddress,
  2482. dst_addr: &IpAddress,
  2483. ) -> Result<(HardwareAddress, Tx)>
  2484. where
  2485. Tx: TxToken,
  2486. {
  2487. if dst_addr.is_broadcast() {
  2488. let hardware_addr = match self.caps.medium {
  2489. #[cfg(feature = "medium-ethernet")]
  2490. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST),
  2491. #[cfg(feature = "medium-ieee802154")]
  2492. Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST),
  2493. #[cfg(feature = "medium-ip")]
  2494. Medium::Ip => unreachable!(),
  2495. };
  2496. return Ok((hardware_addr, tx_token));
  2497. }
  2498. if dst_addr.is_multicast() {
  2499. let b = dst_addr.as_bytes();
  2500. let hardware_addr = match *dst_addr {
  2501. #[cfg(feature = "proto-ipv4")]
  2502. IpAddress::Ipv4(_addr) => {
  2503. HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2504. 0x01,
  2505. 0x00,
  2506. 0x5e,
  2507. b[1] & 0x7F,
  2508. b[2],
  2509. b[3],
  2510. ]))
  2511. }
  2512. #[cfg(feature = "proto-ipv6")]
  2513. IpAddress::Ipv6(_addr) => match self.caps.medium {
  2514. #[cfg(feature = "medium-ethernet")]
  2515. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2516. 0x33, 0x33, b[12], b[13], b[14], b[15],
  2517. ])),
  2518. #[cfg(feature = "medium-ieee802154")]
  2519. Medium::Ieee802154 => {
  2520. // Not sure if this is correct
  2521. HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST)
  2522. }
  2523. #[cfg(feature = "medium-ip")]
  2524. Medium::Ip => unreachable!(),
  2525. },
  2526. };
  2527. return Ok((hardware_addr, tx_token));
  2528. }
  2529. let dst_addr = self.route(dst_addr, self.now)?;
  2530. match self
  2531. .neighbor_cache
  2532. .as_mut()
  2533. .unwrap()
  2534. .lookup(&dst_addr, self.now)
  2535. {
  2536. NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)),
  2537. NeighborAnswer::RateLimited => return Err(Error::Unaddressable),
  2538. _ => (), // XXX
  2539. }
  2540. match (src_addr, dst_addr) {
  2541. #[cfg(feature = "proto-ipv4")]
  2542. (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => {
  2543. net_debug!(
  2544. "address {} not in neighbor cache, sending ARP request",
  2545. dst_addr
  2546. );
  2547. let src_hardware_addr =
  2548. if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2549. addr
  2550. } else {
  2551. return Err(Error::Malformed);
  2552. };
  2553. let arp_repr = ArpRepr::EthernetIpv4 {
  2554. operation: ArpOperation::Request,
  2555. source_hardware_addr: src_hardware_addr,
  2556. source_protocol_addr: src_addr,
  2557. target_hardware_addr: EthernetAddress::BROADCAST,
  2558. target_protocol_addr: dst_addr,
  2559. };
  2560. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2561. frame.set_dst_addr(EthernetAddress::BROADCAST);
  2562. frame.set_ethertype(EthernetProtocol::Arp);
  2563. arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
  2564. })?;
  2565. }
  2566. #[cfg(feature = "proto-ipv6")]
  2567. (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
  2568. net_debug!(
  2569. "address {} not in neighbor cache, sending Neighbor Solicitation",
  2570. dst_addr
  2571. );
  2572. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  2573. target_addr: dst_addr,
  2574. lladdr: Some(self.hardware_addr.unwrap().into()),
  2575. });
  2576. let packet = IpPacket::Icmpv6((
  2577. Ipv6Repr {
  2578. src_addr,
  2579. dst_addr: dst_addr.solicited_node(),
  2580. next_header: IpProtocol::Icmpv6,
  2581. payload_len: solicit.buffer_len(),
  2582. hop_limit: 0xff,
  2583. },
  2584. solicit,
  2585. ));
  2586. self.dispatch_ip(tx_token, packet, None)?;
  2587. }
  2588. #[allow(unreachable_patterns)]
  2589. _ => (),
  2590. }
  2591. // The request got dispatched, limit the rate on the cache.
  2592. self.neighbor_cache.as_mut().unwrap().limit_rate(self.now);
  2593. Err(Error::Unaddressable)
  2594. }
  2595. fn flush_cache(&mut self) {
  2596. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2597. if let Some(cache) = self.neighbor_cache.as_mut() {
  2598. cache.flush()
  2599. }
  2600. }
  2601. fn dispatch_ip<Tx: TxToken>(
  2602. &mut self,
  2603. tx_token: Tx,
  2604. packet: IpPacket,
  2605. _out_packet: Option<&mut OutPackets<'_>>,
  2606. ) -> Result<()> {
  2607. let ip_repr = packet.ip_repr();
  2608. assert!(!ip_repr.dst_addr().is_unspecified());
  2609. match self.caps.medium {
  2610. #[cfg(feature = "medium-ethernet")]
  2611. Medium::Ethernet => {
  2612. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2613. tx_token,
  2614. &ip_repr.src_addr(),
  2615. &ip_repr.dst_addr(),
  2616. )? {
  2617. (HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token),
  2618. #[cfg(feature = "medium-ieee802154")]
  2619. (HardwareAddress::Ieee802154(_), _) => unreachable!(),
  2620. };
  2621. let caps = self.caps.clone();
  2622. self.dispatch_ethernet(tx_token, ip_repr.total_len(), |mut frame| {
  2623. frame.set_dst_addr(dst_hardware_addr);
  2624. match ip_repr {
  2625. #[cfg(feature = "proto-ipv4")]
  2626. IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4),
  2627. #[cfg(feature = "proto-ipv6")]
  2628. IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6),
  2629. }
  2630. ip_repr.emit(frame.payload_mut(), &caps.checksum);
  2631. let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..];
  2632. packet.emit_payload(ip_repr, payload, &caps);
  2633. })
  2634. }
  2635. #[cfg(feature = "medium-ip")]
  2636. Medium::Ip => {
  2637. let tx_len = ip_repr.total_len();
  2638. tx_token.consume(self.now, tx_len, |mut tx_buffer| {
  2639. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2640. ip_repr.emit(&mut tx_buffer, &self.caps.checksum);
  2641. let payload = &mut tx_buffer[ip_repr.buffer_len()..];
  2642. packet.emit_payload(ip_repr, payload, &self.caps);
  2643. Ok(())
  2644. })
  2645. }
  2646. #[cfg(feature = "medium-ieee802154")]
  2647. Medium::Ieee802154 => {
  2648. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2649. tx_token,
  2650. &ip_repr.src_addr(),
  2651. &ip_repr.dst_addr(),
  2652. )? {
  2653. (HardwareAddress::Ieee802154(addr), tx_token) => (addr, tx_token),
  2654. _ => unreachable!(),
  2655. };
  2656. self.dispatch_ieee802154(dst_hardware_addr, &ip_repr, tx_token, packet, _out_packet)
  2657. }
  2658. }
  2659. }
  2660. #[cfg(all(feature = "medium-ieee802154", feature = "proto-sixlowpan"))]
  2661. fn dispatch_ieee802154<Tx: TxToken>(
  2662. &mut self,
  2663. ll_dst_a: Ieee802154Address,
  2664. ip_repr: &IpRepr,
  2665. tx_token: Tx,
  2666. packet: IpPacket,
  2667. _out_packet: Option<&mut OutPackets>,
  2668. ) -> Result<()> {
  2669. // We first need to convert the IPv6 packet to a 6LoWPAN compressed packet.
  2670. // Whenever this packet is to big to fit in the IEEE802.15.4 packet, then we need to
  2671. // fragment it.
  2672. let ll_src_a = self.hardware_addr.map_or_else(
  2673. || Err(Error::Malformed),
  2674. |addr| match addr {
  2675. HardwareAddress::Ieee802154(addr) => Ok(addr),
  2676. _ => Err(Error::Malformed),
  2677. },
  2678. )?;
  2679. let (src_addr, dst_addr) = match (ip_repr.src_addr(), ip_repr.dst_addr()) {
  2680. (IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => (src_addr, dst_addr),
  2681. #[allow(unreachable_patterns)]
  2682. _ => return Err(Error::Unaddressable),
  2683. };
  2684. // Create the IEEE802.15.4 header.
  2685. let ieee_repr = Ieee802154Repr {
  2686. frame_type: Ieee802154FrameType::Data,
  2687. security_enabled: false,
  2688. frame_pending: false,
  2689. ack_request: false,
  2690. sequence_number: Some(self.get_sequence_number()),
  2691. pan_id_compression: true,
  2692. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2693. dst_pan_id: self.pan_id,
  2694. dst_addr: Some(ll_dst_a),
  2695. src_pan_id: self.pan_id,
  2696. src_addr: Some(ll_src_a),
  2697. };
  2698. // Create the 6LoWPAN IPHC header.
  2699. let iphc_repr = SixlowpanIphcRepr {
  2700. src_addr,
  2701. ll_src_addr: Some(ll_src_a),
  2702. dst_addr,
  2703. ll_dst_addr: Some(ll_dst_a),
  2704. next_header: match &packet {
  2705. IpPacket::Icmpv6(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Icmpv6),
  2706. #[cfg(feature = "socket-tcp")]
  2707. IpPacket::Tcp(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Tcp),
  2708. #[cfg(feature = "socket-udp")]
  2709. IpPacket::Udp(_) => SixlowpanNextHeader::Compressed,
  2710. #[allow(unreachable_patterns)]
  2711. _ => return Err(Error::Unrecognized),
  2712. },
  2713. hop_limit: ip_repr.hop_limit(),
  2714. ecn: None,
  2715. dscp: None,
  2716. flow_label: None,
  2717. };
  2718. // Now we calculate the total size of the packet.
  2719. // We need to know this, such that we know when to do the fragmentation.
  2720. let mut total_size = 0;
  2721. total_size += iphc_repr.buffer_len();
  2722. let mut _compressed_headers_len = iphc_repr.buffer_len();
  2723. let mut _uncompressed_headers_len = ip_repr.buffer_len();
  2724. #[allow(unreachable_patterns)]
  2725. match packet {
  2726. #[cfg(feature = "socket-udp")]
  2727. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2728. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2729. _compressed_headers_len += udp_repr.header_len();
  2730. _uncompressed_headers_len += udpv6_repr.header_len();
  2731. total_size += udp_repr.header_len() + payload.len();
  2732. }
  2733. #[cfg(feature = "socket-tcp")]
  2734. IpPacket::Tcp((_, tcp_repr)) => {
  2735. total_size += tcp_repr.buffer_len();
  2736. }
  2737. #[cfg(feature = "proto-ipv6")]
  2738. IpPacket::Icmpv6((_, icmp_repr)) => {
  2739. total_size += icmp_repr.buffer_len();
  2740. }
  2741. _ => return Err(Error::Unrecognized),
  2742. }
  2743. let ieee_len = ieee_repr.buffer_len();
  2744. if total_size + ieee_len > 125 {
  2745. cfg_if::cfg_if! {
  2746. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  2747. // The packet does not fit in one Ieee802154 frame, so we need fragmentation.
  2748. // We do this by emitting everything in the `out_packet.buffer` from the interface.
  2749. // After emitting everything into that buffer, we send the first fragment heere.
  2750. // When `poll` is called again, we check if out_packet was fully sent, otherwise we
  2751. // call `dispatch_ieee802154_out_packet`, which will transmit the other fragments.
  2752. // `dispatch_ieee802154_out_packet` requires some information about the total packet size,
  2753. // the link local source and destination address...
  2754. let SixlowpanOutPacket {
  2755. buffer,
  2756. packet_len,
  2757. datagram_size,
  2758. datagram_tag,
  2759. sent_bytes,
  2760. fragn_size,
  2761. ll_dst_addr,
  2762. ll_src_addr,
  2763. datagram_offset,
  2764. ..
  2765. } = &mut _out_packet.unwrap().sixlowpan_out_packet;
  2766. *ll_dst_addr = ll_dst_a;
  2767. *ll_src_addr = ll_src_a;
  2768. let mut iphc_packet =
  2769. SixlowpanIphcPacket::new_unchecked(&mut buffer[..iphc_repr.buffer_len()]);
  2770. iphc_repr.emit(&mut iphc_packet);
  2771. let b = &mut buffer[iphc_repr.buffer_len()..];
  2772. #[allow(unreachable_patterns)]
  2773. match packet {
  2774. #[cfg(feature = "socket-udp")]
  2775. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2776. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2777. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2778. &mut b[..udp_repr.header_len() + payload.len()],
  2779. );
  2780. udp_repr.emit(
  2781. &mut udp_packet,
  2782. &iphc_repr.src_addr,
  2783. &iphc_repr.dst_addr,
  2784. payload.len(),
  2785. |buf| buf.copy_from_slice(payload),
  2786. );
  2787. }
  2788. #[cfg(feature = "socket-tcp")]
  2789. IpPacket::Tcp((_, tcp_repr)) => {
  2790. let mut tcp_packet = TcpPacket::new_unchecked(&mut b[..tcp_repr.buffer_len()]);
  2791. tcp_repr.emit(
  2792. &mut tcp_packet,
  2793. &iphc_repr.src_addr.into(),
  2794. &iphc_repr.dst_addr.into(),
  2795. &self.caps.checksum,
  2796. );
  2797. }
  2798. #[cfg(feature = "proto-ipv6")]
  2799. IpPacket::Icmpv6((_, icmp_repr)) => {
  2800. let mut icmp_packet =
  2801. Icmpv6Packet::new_unchecked(&mut b[..icmp_repr.buffer_len()]);
  2802. icmp_repr.emit(
  2803. &iphc_repr.src_addr.into(),
  2804. &iphc_repr.dst_addr.into(),
  2805. &mut icmp_packet,
  2806. &self.caps.checksum,
  2807. );
  2808. }
  2809. _ => return Err(Error::Unrecognized),
  2810. }
  2811. *packet_len = total_size;
  2812. // The datagram size that we need to set in the first fragment header is equal to the
  2813. // IPv6 payload length + 40.
  2814. *datagram_size = (packet.ip_repr().payload_len() + 40) as u16;
  2815. // We generate a random tag.
  2816. let tag = self.get_sixlowpan_fragment_tag();
  2817. // We save the tag for the other fragments that will be created when calling `poll`
  2818. // multiple times.
  2819. *datagram_tag = tag;
  2820. let frag1 = SixlowpanFragRepr::FirstFragment {
  2821. size: *datagram_size,
  2822. tag,
  2823. };
  2824. let fragn = SixlowpanFragRepr::Fragment {
  2825. size: *datagram_size,
  2826. tag,
  2827. offset: 0,
  2828. };
  2829. // We calculate how much data we can send in the first fragment and the other
  2830. // fragments. The eventual IPv6 sizes of these fragments need to be a multiple of eight
  2831. // (except for the last fragment) since the offset field in the fragment is an offset
  2832. // in multiples of 8 octets. This is explained in [RFC 4944 § 5.3].
  2833. //
  2834. // [RFC 4944 § 5.3]: https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
  2835. let header_diff = _uncompressed_headers_len - _compressed_headers_len;
  2836. let frag1_size =
  2837. (125 - ieee_len - frag1.buffer_len() + header_diff) / 8 * 8 - (header_diff);
  2838. *fragn_size = (125 - ieee_len - fragn.buffer_len()) / 8 * 8;
  2839. *sent_bytes = frag1_size;
  2840. *datagram_offset = frag1_size + header_diff;
  2841. tx_token.consume(
  2842. self.now,
  2843. ieee_len + frag1.buffer_len() + frag1_size,
  2844. |mut tx_buf| {
  2845. // Add the IEEE header.
  2846. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2847. ieee_repr.emit(&mut ieee_packet);
  2848. tx_buf = &mut tx_buf[ieee_len..];
  2849. // Add the first fragment header
  2850. let mut frag1_packet = SixlowpanFragPacket::new_unchecked(&mut tx_buf);
  2851. frag1.emit(&mut frag1_packet);
  2852. tx_buf = &mut tx_buf[frag1.buffer_len()..];
  2853. // Add the buffer part.
  2854. tx_buf[..frag1_size].copy_from_slice(&buffer[..frag1_size]);
  2855. Ok(())
  2856. },
  2857. )
  2858. } else {
  2859. net_debug!("Enable the `proto-sixlowpan-fragmentation` feature for fragmentation support.");
  2860. Ok(())
  2861. }
  2862. }
  2863. } else {
  2864. // We don't need fragmentation, so we emit everything to the TX token.
  2865. tx_token.consume(self.now, total_size + ieee_len, |mut tx_buf| {
  2866. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2867. ieee_repr.emit(&mut ieee_packet);
  2868. tx_buf = &mut tx_buf[ieee_len..];
  2869. let mut iphc_packet =
  2870. SixlowpanIphcPacket::new_unchecked(&mut tx_buf[..iphc_repr.buffer_len()]);
  2871. iphc_repr.emit(&mut iphc_packet);
  2872. tx_buf = &mut tx_buf[iphc_repr.buffer_len()..];
  2873. #[allow(unreachable_patterns)]
  2874. match packet {
  2875. #[cfg(feature = "socket-udp")]
  2876. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2877. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2878. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2879. &mut tx_buf[..udp_repr.header_len() + payload.len()],
  2880. );
  2881. udp_repr.emit(
  2882. &mut udp_packet,
  2883. &iphc_repr.src_addr,
  2884. &iphc_repr.dst_addr,
  2885. payload.len(),
  2886. |buf| buf.copy_from_slice(payload),
  2887. );
  2888. }
  2889. #[cfg(feature = "socket-tcp")]
  2890. IpPacket::Tcp((_, tcp_repr)) => {
  2891. let mut tcp_packet =
  2892. TcpPacket::new_unchecked(&mut tx_buf[..tcp_repr.buffer_len()]);
  2893. tcp_repr.emit(
  2894. &mut tcp_packet,
  2895. &iphc_repr.src_addr.into(),
  2896. &iphc_repr.dst_addr.into(),
  2897. &self.caps.checksum,
  2898. );
  2899. }
  2900. #[cfg(feature = "proto-ipv6")]
  2901. IpPacket::Icmpv6((_, icmp_repr)) => {
  2902. let mut icmp_packet =
  2903. Icmpv6Packet::new_unchecked(&mut tx_buf[..icmp_repr.buffer_len()]);
  2904. icmp_repr.emit(
  2905. &iphc_repr.src_addr.into(),
  2906. &iphc_repr.dst_addr.into(),
  2907. &mut icmp_packet,
  2908. &self.caps.checksum,
  2909. );
  2910. }
  2911. _ => return Err(Error::Unrecognized),
  2912. }
  2913. Ok(())
  2914. })
  2915. }
  2916. }
  2917. #[cfg(all(
  2918. feature = "medium-ieee802154",
  2919. feature = "proto-sixlowpan-fragmentation"
  2920. ))]
  2921. fn dispatch_ieee802154_out_packet<Tx: TxToken>(
  2922. &mut self,
  2923. tx_token: Tx,
  2924. out_packet: &mut SixlowpanOutPacket,
  2925. ) -> Result<()> {
  2926. let SixlowpanOutPacket {
  2927. buffer,
  2928. packet_len,
  2929. datagram_size,
  2930. datagram_tag,
  2931. datagram_offset,
  2932. sent_bytes,
  2933. fragn_size,
  2934. ll_dst_addr,
  2935. ll_src_addr,
  2936. ..
  2937. } = out_packet;
  2938. // Create the IEEE802.15.4 header.
  2939. let ieee_repr = Ieee802154Repr {
  2940. frame_type: Ieee802154FrameType::Data,
  2941. security_enabled: false,
  2942. frame_pending: false,
  2943. ack_request: false,
  2944. sequence_number: Some(self.get_sequence_number()),
  2945. pan_id_compression: true,
  2946. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2947. dst_pan_id: self.pan_id,
  2948. dst_addr: Some(*ll_dst_addr),
  2949. src_pan_id: self.pan_id,
  2950. src_addr: Some(*ll_src_addr),
  2951. };
  2952. // Create the FRAG_N header.
  2953. let fragn = SixlowpanFragRepr::Fragment {
  2954. size: *datagram_size,
  2955. tag: *datagram_tag,
  2956. offset: (*datagram_offset / 8) as u8,
  2957. };
  2958. let ieee_len = ieee_repr.buffer_len();
  2959. let frag_size = (*packet_len - *sent_bytes).min(*fragn_size);
  2960. tx_token.consume(
  2961. self.now,
  2962. ieee_repr.buffer_len() + fragn.buffer_len() + frag_size,
  2963. |mut tx_buf| {
  2964. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2965. ieee_repr.emit(&mut ieee_packet);
  2966. tx_buf = &mut tx_buf[ieee_len..];
  2967. let mut frag_packet =
  2968. SixlowpanFragPacket::new_unchecked(&mut tx_buf[..fragn.buffer_len()]);
  2969. fragn.emit(&mut frag_packet);
  2970. tx_buf = &mut tx_buf[fragn.buffer_len()..];
  2971. // Add the buffer part
  2972. tx_buf[..frag_size].copy_from_slice(&buffer[*sent_bytes..][..frag_size]);
  2973. *sent_bytes += frag_size;
  2974. *datagram_offset += frag_size;
  2975. Ok(())
  2976. },
  2977. )
  2978. }
  2979. #[cfg(feature = "proto-igmp")]
  2980. fn igmp_report_packet<'any>(
  2981. &self,
  2982. version: IgmpVersion,
  2983. group_addr: Ipv4Address,
  2984. ) -> Option<IpPacket<'any>> {
  2985. let iface_addr = self.ipv4_address()?;
  2986. let igmp_repr = IgmpRepr::MembershipReport {
  2987. group_addr,
  2988. version,
  2989. };
  2990. let pkt = IpPacket::Igmp((
  2991. Ipv4Repr {
  2992. src_addr: iface_addr,
  2993. // Send to the group being reported
  2994. dst_addr: group_addr,
  2995. next_header: IpProtocol::Igmp,
  2996. payload_len: igmp_repr.buffer_len(),
  2997. hop_limit: 1,
  2998. // TODO: add Router Alert IPv4 header option. See
  2999. // [#183](https://github.com/m-labs/smoltcp/issues/183).
  3000. },
  3001. igmp_repr,
  3002. ));
  3003. Some(pkt)
  3004. }
  3005. #[cfg(feature = "proto-igmp")]
  3006. fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<IpPacket<'any>> {
  3007. self.ipv4_address().map(|iface_addr| {
  3008. let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
  3009. IpPacket::Igmp((
  3010. Ipv4Repr {
  3011. src_addr: iface_addr,
  3012. dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS,
  3013. next_header: IpProtocol::Igmp,
  3014. payload_len: igmp_repr.buffer_len(),
  3015. hop_limit: 1,
  3016. },
  3017. igmp_repr,
  3018. ))
  3019. })
  3020. }
  3021. }
  3022. #[cfg(test)]
  3023. mod test {
  3024. use std::collections::BTreeMap;
  3025. #[cfg(feature = "proto-igmp")]
  3026. use std::vec::Vec;
  3027. use super::*;
  3028. use crate::iface::Interface;
  3029. #[cfg(feature = "medium-ethernet")]
  3030. use crate::iface::NeighborCache;
  3031. use crate::phy::{ChecksumCapabilities, Loopback};
  3032. #[cfg(feature = "proto-igmp")]
  3033. use crate::time::Instant;
  3034. use crate::{Error, Result};
  3035. #[allow(unused)]
  3036. fn fill_slice(s: &mut [u8], val: u8) {
  3037. for x in s.iter_mut() {
  3038. *x = val
  3039. }
  3040. }
  3041. fn create<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3042. #[cfg(feature = "medium-ethernet")]
  3043. return create_ethernet();
  3044. #[cfg(not(feature = "medium-ethernet"))]
  3045. return create_ip();
  3046. }
  3047. #[cfg(all(feature = "medium-ip"))]
  3048. #[allow(unused)]
  3049. fn create_ip<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3050. // Create a basic device
  3051. let mut device = Loopback::new(Medium::Ip);
  3052. let ip_addrs = [
  3053. #[cfg(feature = "proto-ipv4")]
  3054. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3055. #[cfg(feature = "proto-ipv6")]
  3056. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3057. #[cfg(feature = "proto-ipv6")]
  3058. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3059. ];
  3060. let iface_builder = InterfaceBuilder::new().ip_addrs(ip_addrs);
  3061. #[cfg(feature = "proto-ipv4-fragmentation")]
  3062. let iface_builder =
  3063. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3064. #[cfg(feature = "proto-igmp")]
  3065. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3066. let iface = iface_builder.finalize(&mut device);
  3067. (iface, SocketSet::new(vec![]), device)
  3068. }
  3069. #[cfg(all(feature = "medium-ethernet"))]
  3070. fn create_ethernet<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3071. // Create a basic device
  3072. let mut device = Loopback::new(Medium::Ethernet);
  3073. let ip_addrs = [
  3074. #[cfg(feature = "proto-ipv4")]
  3075. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3076. #[cfg(feature = "proto-ipv6")]
  3077. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3078. #[cfg(feature = "proto-ipv6")]
  3079. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3080. ];
  3081. let iface_builder = InterfaceBuilder::new()
  3082. .hardware_addr(EthernetAddress::default().into())
  3083. .neighbor_cache(NeighborCache::new(BTreeMap::new()))
  3084. .ip_addrs(ip_addrs);
  3085. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  3086. let iface_builder = iface_builder
  3087. .sixlowpan_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()))
  3088. .sixlowpan_out_packet_cache(vec![]);
  3089. #[cfg(feature = "proto-ipv4-fragmentation")]
  3090. let iface_builder =
  3091. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3092. #[cfg(feature = "proto-igmp")]
  3093. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3094. let iface = iface_builder.finalize(&mut device);
  3095. (iface, SocketSet::new(vec![]), device)
  3096. }
  3097. #[cfg(feature = "proto-igmp")]
  3098. fn recv_all(device: &mut Loopback, timestamp: Instant) -> Vec<Vec<u8>> {
  3099. let mut pkts = Vec::new();
  3100. while let Some((rx, _tx)) = device.receive() {
  3101. rx.consume(timestamp, |pkt| {
  3102. pkts.push(pkt.to_vec());
  3103. Ok(())
  3104. })
  3105. .unwrap();
  3106. }
  3107. pkts
  3108. }
  3109. #[derive(Debug, PartialEq)]
  3110. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  3111. struct MockTxToken;
  3112. impl TxToken for MockTxToken {
  3113. fn consume<R, F>(self, _: Instant, _: usize, _: F) -> Result<R>
  3114. where
  3115. F: FnOnce(&mut [u8]) -> Result<R>,
  3116. {
  3117. Err(Error::Unaddressable)
  3118. }
  3119. }
  3120. #[test]
  3121. #[should_panic(expected = "hardware_addr required option was not set")]
  3122. #[cfg(all(feature = "medium-ethernet"))]
  3123. fn test_builder_initialization_panic() {
  3124. let mut device = Loopback::new(Medium::Ethernet);
  3125. InterfaceBuilder::new().finalize(&mut device);
  3126. }
  3127. #[test]
  3128. #[cfg(feature = "proto-ipv4")]
  3129. fn test_no_icmp_no_unicast_ipv4() {
  3130. let (mut iface, mut sockets, _device) = create();
  3131. // Unknown Ipv4 Protocol
  3132. //
  3133. // Because the destination is the broadcast address
  3134. // this should not trigger and Destination Unreachable
  3135. // response. See RFC 1122 § 3.2.2.
  3136. let repr = IpRepr::Ipv4(Ipv4Repr {
  3137. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3138. dst_addr: Ipv4Address::BROADCAST,
  3139. next_header: IpProtocol::Unknown(0x0c),
  3140. payload_len: 0,
  3141. hop_limit: 0x40,
  3142. });
  3143. let mut bytes = vec![0u8; 54];
  3144. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3145. let frame = Ipv4Packet::new_unchecked(&bytes);
  3146. // Ensure that the unknown protocol frame does not trigger an
  3147. // ICMP error response when the destination address is a
  3148. // broadcast address
  3149. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3150. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  3151. #[cfg(feature = "proto-ipv4-fragmentation")]
  3152. assert_eq!(
  3153. iface.inner.process_ipv4(
  3154. &mut sockets,
  3155. &frame,
  3156. Some(&mut iface.fragments.ipv4_fragments)
  3157. ),
  3158. None
  3159. );
  3160. }
  3161. #[test]
  3162. #[cfg(feature = "proto-ipv6")]
  3163. fn test_no_icmp_no_unicast_ipv6() {
  3164. let (mut iface, mut sockets, _device) = create();
  3165. // Unknown Ipv6 Protocol
  3166. //
  3167. // Because the destination is the broadcast address
  3168. // this should not trigger and Destination Unreachable
  3169. // response. See RFC 1122 § 3.2.2.
  3170. let repr = IpRepr::Ipv6(Ipv6Repr {
  3171. src_addr: Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
  3172. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3173. next_header: IpProtocol::Unknown(0x0c),
  3174. payload_len: 0,
  3175. hop_limit: 0x40,
  3176. });
  3177. let mut bytes = vec![0u8; 54];
  3178. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3179. let frame = Ipv6Packet::new_unchecked(&bytes);
  3180. // Ensure that the unknown protocol frame does not trigger an
  3181. // ICMP error response when the destination address is a
  3182. // broadcast address
  3183. assert_eq!(iface.inner.process_ipv6(&mut sockets, &frame), None);
  3184. }
  3185. #[test]
  3186. #[cfg(feature = "proto-ipv4")]
  3187. fn test_icmp_error_no_payload() {
  3188. static NO_BYTES: [u8; 0] = [];
  3189. let (mut iface, mut sockets, _device) = create();
  3190. // Unknown Ipv4 Protocol with no payload
  3191. let repr = IpRepr::Ipv4(Ipv4Repr {
  3192. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3193. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3194. next_header: IpProtocol::Unknown(0x0c),
  3195. payload_len: 0,
  3196. hop_limit: 0x40,
  3197. });
  3198. let mut bytes = vec![0u8; 34];
  3199. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3200. let frame = Ipv4Packet::new_unchecked(&bytes);
  3201. // The expected Destination Unreachable response due to the
  3202. // unknown protocol
  3203. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3204. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  3205. header: Ipv4Repr {
  3206. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3207. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3208. next_header: IpProtocol::Unknown(12),
  3209. payload_len: 0,
  3210. hop_limit: 64,
  3211. },
  3212. data: &NO_BYTES,
  3213. };
  3214. let expected_repr = IpPacket::Icmpv4((
  3215. Ipv4Repr {
  3216. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3217. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3218. next_header: IpProtocol::Icmp,
  3219. payload_len: icmp_repr.buffer_len(),
  3220. hop_limit: 64,
  3221. },
  3222. icmp_repr,
  3223. ));
  3224. // Ensure that the unknown protocol triggers an error response.
  3225. // And we correctly handle no payload.
  3226. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3227. assert_eq!(
  3228. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3229. Some(expected_repr)
  3230. );
  3231. #[cfg(feature = "proto-ipv4-fragmentation")]
  3232. assert_eq!(
  3233. iface.inner.process_ipv4(
  3234. &mut sockets,
  3235. &frame,
  3236. Some(&mut iface.fragments.ipv4_fragments)
  3237. ),
  3238. Some(expected_repr)
  3239. );
  3240. }
  3241. #[test]
  3242. #[cfg(feature = "proto-ipv4")]
  3243. fn test_local_subnet_broadcasts() {
  3244. let (mut iface, _, _device) = create();
  3245. iface.update_ip_addrs(|addrs| {
  3246. addrs.iter_mut().next().map(|addr| {
  3247. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 1, 23]), 24));
  3248. });
  3249. });
  3250. assert!(iface
  3251. .inner
  3252. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 255])),);
  3253. assert!(!iface
  3254. .inner
  3255. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 254])),);
  3256. iface.update_ip_addrs(|addrs| {
  3257. addrs.iter_mut().next().map(|addr| {
  3258. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 16));
  3259. });
  3260. });
  3261. assert!(!iface
  3262. .inner
  3263. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 255])),);
  3264. assert!(!iface
  3265. .inner
  3266. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 254])),);
  3267. assert!(!iface
  3268. .inner
  3269. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 254])),);
  3270. assert!(iface
  3271. .inner
  3272. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 255])),);
  3273. iface.update_ip_addrs(|addrs| {
  3274. addrs.iter_mut().next().map(|addr| {
  3275. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 8));
  3276. });
  3277. });
  3278. assert!(!iface
  3279. .inner
  3280. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 255])),);
  3281. assert!(!iface
  3282. .inner
  3283. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 254])),);
  3284. assert!(!iface
  3285. .inner
  3286. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 254])),);
  3287. assert!(iface
  3288. .inner
  3289. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 255])),);
  3290. }
  3291. #[test]
  3292. #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))]
  3293. fn test_icmp_error_port_unreachable() {
  3294. static UDP_PAYLOAD: [u8; 12] = [
  3295. 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x6c, 0x64, 0x21,
  3296. ];
  3297. let (mut iface, mut sockets, _device) = create();
  3298. let mut udp_bytes_unicast = vec![0u8; 20];
  3299. let mut udp_bytes_broadcast = vec![0u8; 20];
  3300. let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast);
  3301. let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast);
  3302. let udp_repr = UdpRepr {
  3303. src_port: 67,
  3304. dst_port: 68,
  3305. };
  3306. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3307. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3308. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3309. next_header: IpProtocol::Udp,
  3310. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3311. hop_limit: 64,
  3312. });
  3313. // Emit the representations to a packet
  3314. udp_repr.emit(
  3315. &mut packet_unicast,
  3316. &ip_repr.src_addr(),
  3317. &ip_repr.dst_addr(),
  3318. UDP_PAYLOAD.len(),
  3319. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3320. &ChecksumCapabilities::default(),
  3321. );
  3322. let data = packet_unicast.into_inner();
  3323. // The expected Destination Unreachable ICMPv4 error response due
  3324. // to no sockets listening on the destination port.
  3325. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3326. reason: Icmpv4DstUnreachable::PortUnreachable,
  3327. header: Ipv4Repr {
  3328. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3329. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3330. next_header: IpProtocol::Udp,
  3331. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3332. hop_limit: 64,
  3333. },
  3334. data,
  3335. };
  3336. let expected_repr = IpPacket::Icmpv4((
  3337. Ipv4Repr {
  3338. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3339. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3340. next_header: IpProtocol::Icmp,
  3341. payload_len: icmp_repr.buffer_len(),
  3342. hop_limit: 64,
  3343. },
  3344. icmp_repr,
  3345. ));
  3346. // Ensure that the unknown protocol triggers an error response.
  3347. // And we correctly handle no payload.
  3348. assert_eq!(
  3349. iface.inner.process_udp(&mut sockets, ip_repr, false, data),
  3350. Some(expected_repr)
  3351. );
  3352. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3353. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3354. dst_addr: Ipv4Address::BROADCAST,
  3355. next_header: IpProtocol::Udp,
  3356. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3357. hop_limit: 64,
  3358. });
  3359. // Emit the representations to a packet
  3360. udp_repr.emit(
  3361. &mut packet_broadcast,
  3362. &ip_repr.src_addr(),
  3363. &IpAddress::Ipv4(Ipv4Address::BROADCAST),
  3364. UDP_PAYLOAD.len(),
  3365. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3366. &ChecksumCapabilities::default(),
  3367. );
  3368. // Ensure that the port unreachable error does not trigger an
  3369. // ICMP error response when the destination address is a
  3370. // broadcast address and no socket is bound to the port.
  3371. assert_eq!(
  3372. iface
  3373. .inner
  3374. .process_udp(&mut sockets, ip_repr, false, packet_broadcast.into_inner()),
  3375. None
  3376. );
  3377. }
  3378. #[test]
  3379. #[cfg(feature = "socket-udp")]
  3380. fn test_handle_udp_broadcast() {
  3381. use crate::wire::IpEndpoint;
  3382. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  3383. let (mut iface, mut sockets, _device) = create();
  3384. let rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3385. let tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3386. let udp_socket = udp::Socket::new(rx_buffer, tx_buffer);
  3387. let mut udp_bytes = vec![0u8; 13];
  3388. let mut packet = UdpPacket::new_unchecked(&mut udp_bytes);
  3389. let socket_handle = sockets.add(udp_socket);
  3390. #[cfg(feature = "proto-ipv6")]
  3391. let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3392. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3393. let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02);
  3394. let udp_repr = UdpRepr {
  3395. src_port: 67,
  3396. dst_port: 68,
  3397. };
  3398. #[cfg(feature = "proto-ipv6")]
  3399. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3400. src_addr: src_ip,
  3401. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3402. next_header: IpProtocol::Udp,
  3403. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3404. hop_limit: 0x40,
  3405. });
  3406. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3407. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3408. src_addr: src_ip,
  3409. dst_addr: Ipv4Address::BROADCAST,
  3410. next_header: IpProtocol::Udp,
  3411. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3412. hop_limit: 0x40,
  3413. });
  3414. // Bind the socket to port 68
  3415. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3416. assert_eq!(socket.bind(68), Ok(()));
  3417. assert!(!socket.can_recv());
  3418. assert!(socket.can_send());
  3419. udp_repr.emit(
  3420. &mut packet,
  3421. &ip_repr.src_addr(),
  3422. &ip_repr.dst_addr(),
  3423. UDP_PAYLOAD.len(),
  3424. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3425. &ChecksumCapabilities::default(),
  3426. );
  3427. // Packet should be handled by bound UDP socket
  3428. assert_eq!(
  3429. iface
  3430. .inner
  3431. .process_udp(&mut sockets, ip_repr, false, packet.into_inner()),
  3432. None
  3433. );
  3434. // Make sure the payload to the UDP packet processed by process_udp is
  3435. // appended to the bound sockets rx_buffer
  3436. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3437. assert!(socket.can_recv());
  3438. assert_eq!(
  3439. socket.recv(),
  3440. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67)))
  3441. );
  3442. }
  3443. #[test]
  3444. #[cfg(feature = "proto-ipv4")]
  3445. fn test_handle_ipv4_broadcast() {
  3446. use crate::wire::{Icmpv4Packet, Icmpv4Repr, Ipv4Packet};
  3447. let (mut iface, mut sockets, _device) = create();
  3448. let our_ipv4_addr = iface.ipv4_address().unwrap();
  3449. let src_ipv4_addr = Ipv4Address([127, 0, 0, 2]);
  3450. // ICMPv4 echo request
  3451. let icmpv4_data: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
  3452. let icmpv4_repr = Icmpv4Repr::EchoRequest {
  3453. ident: 0x1234,
  3454. seq_no: 0xabcd,
  3455. data: &icmpv4_data,
  3456. };
  3457. // Send to IPv4 broadcast address
  3458. let ipv4_repr = Ipv4Repr {
  3459. src_addr: src_ipv4_addr,
  3460. dst_addr: Ipv4Address::BROADCAST,
  3461. next_header: IpProtocol::Icmp,
  3462. hop_limit: 64,
  3463. payload_len: icmpv4_repr.buffer_len(),
  3464. };
  3465. // Emit to ip frame
  3466. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + icmpv4_repr.buffer_len()];
  3467. let frame = {
  3468. ipv4_repr.emit(
  3469. &mut Ipv4Packet::new_unchecked(&mut bytes),
  3470. &ChecksumCapabilities::default(),
  3471. );
  3472. icmpv4_repr.emit(
  3473. &mut Icmpv4Packet::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  3474. &ChecksumCapabilities::default(),
  3475. );
  3476. Ipv4Packet::new_unchecked(&bytes)
  3477. };
  3478. // Expected ICMPv4 echo reply
  3479. let expected_icmpv4_repr = Icmpv4Repr::EchoReply {
  3480. ident: 0x1234,
  3481. seq_no: 0xabcd,
  3482. data: &icmpv4_data,
  3483. };
  3484. let expected_ipv4_repr = Ipv4Repr {
  3485. src_addr: our_ipv4_addr,
  3486. dst_addr: src_ipv4_addr,
  3487. next_header: IpProtocol::Icmp,
  3488. hop_limit: 64,
  3489. payload_len: expected_icmpv4_repr.buffer_len(),
  3490. };
  3491. let expected_packet = IpPacket::Icmpv4((expected_ipv4_repr, expected_icmpv4_repr));
  3492. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3493. assert_eq!(
  3494. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3495. Some(expected_packet)
  3496. );
  3497. #[cfg(feature = "proto-ipv4-fragmentation")]
  3498. assert_eq!(
  3499. iface.inner.process_ipv4(
  3500. &mut sockets,
  3501. &frame,
  3502. Some(&mut iface.fragments.ipv4_fragments)
  3503. ),
  3504. Some(expected_packet)
  3505. );
  3506. }
  3507. #[test]
  3508. #[cfg(feature = "socket-udp")]
  3509. fn test_icmp_reply_size() {
  3510. #[cfg(feature = "proto-ipv6")]
  3511. use crate::wire::Icmpv6DstUnreachable;
  3512. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3513. use crate::wire::IPV4_MIN_MTU as MIN_MTU;
  3514. #[cfg(feature = "proto-ipv6")]
  3515. use crate::wire::IPV6_MIN_MTU as MIN_MTU;
  3516. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3517. const MAX_PAYLOAD_LEN: usize = 528;
  3518. #[cfg(feature = "proto-ipv6")]
  3519. const MAX_PAYLOAD_LEN: usize = 1192;
  3520. let (mut iface, mut sockets, _device) = create();
  3521. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3522. let src_addr = Ipv4Address([192, 168, 1, 1]);
  3523. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3524. let dst_addr = Ipv4Address([192, 168, 1, 2]);
  3525. #[cfg(feature = "proto-ipv6")]
  3526. let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3527. #[cfg(feature = "proto-ipv6")]
  3528. let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2);
  3529. // UDP packet that if not tructated will cause a icmp port unreachable reply
  3530. // to exeed the minimum mtu bytes in length.
  3531. let udp_repr = UdpRepr {
  3532. src_port: 67,
  3533. dst_port: 68,
  3534. };
  3535. let mut bytes = vec![0xff; udp_repr.header_len() + MAX_PAYLOAD_LEN];
  3536. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  3537. udp_repr.emit(
  3538. &mut packet,
  3539. &src_addr.into(),
  3540. &dst_addr.into(),
  3541. MAX_PAYLOAD_LEN,
  3542. |buf| fill_slice(buf, 0x2a),
  3543. &ChecksumCapabilities::default(),
  3544. );
  3545. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3546. let ip_repr = Ipv4Repr {
  3547. src_addr,
  3548. dst_addr,
  3549. next_header: IpProtocol::Udp,
  3550. hop_limit: 64,
  3551. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3552. };
  3553. #[cfg(feature = "proto-ipv6")]
  3554. let ip_repr = Ipv6Repr {
  3555. src_addr,
  3556. dst_addr,
  3557. next_header: IpProtocol::Udp,
  3558. hop_limit: 64,
  3559. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3560. };
  3561. let payload = packet.into_inner();
  3562. // Expected packets
  3563. #[cfg(feature = "proto-ipv6")]
  3564. let expected_icmp_repr = Icmpv6Repr::DstUnreachable {
  3565. reason: Icmpv6DstUnreachable::PortUnreachable,
  3566. header: ip_repr,
  3567. data: &payload[..MAX_PAYLOAD_LEN],
  3568. };
  3569. #[cfg(feature = "proto-ipv6")]
  3570. let expected_ip_repr = Ipv6Repr {
  3571. src_addr: dst_addr,
  3572. dst_addr: src_addr,
  3573. next_header: IpProtocol::Icmpv6,
  3574. hop_limit: 64,
  3575. payload_len: expected_icmp_repr.buffer_len(),
  3576. };
  3577. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3578. let expected_icmp_repr = Icmpv4Repr::DstUnreachable {
  3579. reason: Icmpv4DstUnreachable::PortUnreachable,
  3580. header: ip_repr,
  3581. data: &payload[..MAX_PAYLOAD_LEN],
  3582. };
  3583. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3584. let expected_ip_repr = Ipv4Repr {
  3585. src_addr: dst_addr,
  3586. dst_addr: src_addr,
  3587. next_header: IpProtocol::Icmp,
  3588. hop_limit: 64,
  3589. payload_len: expected_icmp_repr.buffer_len(),
  3590. };
  3591. // The expected packet does not exceed the IPV4_MIN_MTU
  3592. #[cfg(feature = "proto-ipv6")]
  3593. assert_eq!(
  3594. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3595. MIN_MTU
  3596. );
  3597. // The expected packet does not exceed the IPV4_MIN_MTU
  3598. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3599. assert_eq!(
  3600. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3601. MIN_MTU
  3602. );
  3603. // The expected packet and the generated packet are equal
  3604. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3605. assert_eq!(
  3606. iface
  3607. .inner
  3608. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3609. Some(IpPacket::Icmpv4((expected_ip_repr, expected_icmp_repr)))
  3610. );
  3611. #[cfg(feature = "proto-ipv6")]
  3612. assert_eq!(
  3613. iface
  3614. .inner
  3615. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3616. Some(IpPacket::Icmpv6((expected_ip_repr, expected_icmp_repr)))
  3617. );
  3618. }
  3619. #[test]
  3620. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3621. fn test_handle_valid_arp_request() {
  3622. let (mut iface, mut sockets, _device) = create_ethernet();
  3623. let mut eth_bytes = vec![0u8; 42];
  3624. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3625. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3626. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3627. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3628. let repr = ArpRepr::EthernetIpv4 {
  3629. operation: ArpOperation::Request,
  3630. source_hardware_addr: remote_hw_addr,
  3631. source_protocol_addr: remote_ip_addr,
  3632. target_hardware_addr: EthernetAddress::default(),
  3633. target_protocol_addr: local_ip_addr,
  3634. };
  3635. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3636. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3637. frame.set_src_addr(remote_hw_addr);
  3638. frame.set_ethertype(EthernetProtocol::Arp);
  3639. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3640. repr.emit(&mut packet);
  3641. // Ensure an ARP Request for us triggers an ARP Reply
  3642. assert_eq!(
  3643. iface
  3644. .inner
  3645. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3646. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3647. operation: ArpOperation::Reply,
  3648. source_hardware_addr: local_hw_addr,
  3649. source_protocol_addr: local_ip_addr,
  3650. target_hardware_addr: remote_hw_addr,
  3651. target_protocol_addr: remote_ip_addr
  3652. }))
  3653. );
  3654. // Ensure the address of the requestor was entered in the cache
  3655. assert_eq!(
  3656. iface.inner.lookup_hardware_addr(
  3657. MockTxToken,
  3658. &IpAddress::Ipv4(local_ip_addr),
  3659. &IpAddress::Ipv4(remote_ip_addr)
  3660. ),
  3661. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3662. );
  3663. }
  3664. #[test]
  3665. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv6"))]
  3666. fn test_handle_valid_ndisc_request() {
  3667. let (mut iface, mut sockets, _device) = create_ethernet();
  3668. let mut eth_bytes = vec![0u8; 86];
  3669. let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1);
  3670. let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2);
  3671. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3672. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3673. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  3674. target_addr: local_ip_addr,
  3675. lladdr: Some(remote_hw_addr.into()),
  3676. });
  3677. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3678. src_addr: remote_ip_addr,
  3679. dst_addr: local_ip_addr.solicited_node(),
  3680. next_header: IpProtocol::Icmpv6,
  3681. hop_limit: 0xff,
  3682. payload_len: solicit.buffer_len(),
  3683. });
  3684. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3685. frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00]));
  3686. frame.set_src_addr(remote_hw_addr);
  3687. frame.set_ethertype(EthernetProtocol::Ipv6);
  3688. ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  3689. solicit.emit(
  3690. &remote_ip_addr.into(),
  3691. &local_ip_addr.solicited_node().into(),
  3692. &mut Icmpv6Packet::new_unchecked(&mut frame.payload_mut()[ip_repr.buffer_len()..]),
  3693. &ChecksumCapabilities::default(),
  3694. );
  3695. let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  3696. flags: NdiscNeighborFlags::SOLICITED,
  3697. target_addr: local_ip_addr,
  3698. lladdr: Some(local_hw_addr.into()),
  3699. });
  3700. let ipv6_expected = Ipv6Repr {
  3701. src_addr: local_ip_addr,
  3702. dst_addr: remote_ip_addr,
  3703. next_header: IpProtocol::Icmpv6,
  3704. hop_limit: 0xff,
  3705. payload_len: icmpv6_expected.buffer_len(),
  3706. };
  3707. // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement
  3708. assert_eq!(
  3709. iface
  3710. .inner
  3711. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3712. Some(EthernetPacket::Ip(IpPacket::Icmpv6((
  3713. ipv6_expected,
  3714. icmpv6_expected
  3715. ))))
  3716. );
  3717. // Ensure the address of the requestor was entered in the cache
  3718. assert_eq!(
  3719. iface.inner.lookup_hardware_addr(
  3720. MockTxToken,
  3721. &IpAddress::Ipv6(local_ip_addr),
  3722. &IpAddress::Ipv6(remote_ip_addr)
  3723. ),
  3724. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3725. );
  3726. }
  3727. #[test]
  3728. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3729. fn test_handle_other_arp_request() {
  3730. let (mut iface, mut sockets, _device) = create_ethernet();
  3731. let mut eth_bytes = vec![0u8; 42];
  3732. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3733. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3734. let repr = ArpRepr::EthernetIpv4 {
  3735. operation: ArpOperation::Request,
  3736. source_hardware_addr: remote_hw_addr,
  3737. source_protocol_addr: remote_ip_addr,
  3738. target_hardware_addr: EthernetAddress::default(),
  3739. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]),
  3740. };
  3741. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3742. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3743. frame.set_src_addr(remote_hw_addr);
  3744. frame.set_ethertype(EthernetProtocol::Arp);
  3745. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3746. repr.emit(&mut packet);
  3747. // Ensure an ARP Request for someone else does not trigger an ARP Reply
  3748. assert_eq!(
  3749. iface
  3750. .inner
  3751. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3752. None
  3753. );
  3754. // Ensure the address of the requestor was NOT entered in the cache
  3755. assert_eq!(
  3756. iface.inner.lookup_hardware_addr(
  3757. MockTxToken,
  3758. &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])),
  3759. &IpAddress::Ipv4(remote_ip_addr)
  3760. ),
  3761. Err(Error::Unaddressable)
  3762. );
  3763. }
  3764. #[test]
  3765. #[cfg(all(
  3766. feature = "medium-ethernet",
  3767. feature = "proto-ipv4",
  3768. not(feature = "medium-ieee802154")
  3769. ))]
  3770. fn test_arp_flush_after_update_ip() {
  3771. let (mut iface, mut sockets, _device) = create_ethernet();
  3772. let mut eth_bytes = vec![0u8; 42];
  3773. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3774. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3775. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3776. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3777. let repr = ArpRepr::EthernetIpv4 {
  3778. operation: ArpOperation::Request,
  3779. source_hardware_addr: remote_hw_addr,
  3780. source_protocol_addr: remote_ip_addr,
  3781. target_hardware_addr: EthernetAddress::default(),
  3782. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3783. };
  3784. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3785. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3786. frame.set_src_addr(remote_hw_addr);
  3787. frame.set_ethertype(EthernetProtocol::Arp);
  3788. {
  3789. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3790. repr.emit(&mut packet);
  3791. }
  3792. // Ensure an ARP Request for us triggers an ARP Reply
  3793. assert_eq!(
  3794. iface
  3795. .inner
  3796. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3797. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3798. operation: ArpOperation::Reply,
  3799. source_hardware_addr: local_hw_addr,
  3800. source_protocol_addr: local_ip_addr,
  3801. target_hardware_addr: remote_hw_addr,
  3802. target_protocol_addr: remote_ip_addr
  3803. }))
  3804. );
  3805. // Ensure the address of the requestor was entered in the cache
  3806. assert_eq!(
  3807. iface.inner.lookup_hardware_addr(
  3808. MockTxToken,
  3809. &IpAddress::Ipv4(local_ip_addr),
  3810. &IpAddress::Ipv4(remote_ip_addr)
  3811. ),
  3812. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3813. );
  3814. // Update IP addrs to trigger ARP cache flush
  3815. let local_ip_addr_new = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3816. iface.update_ip_addrs(|addrs| {
  3817. addrs.iter_mut().next().map(|addr| {
  3818. *addr = IpCidr::Ipv4(Ipv4Cidr::new(local_ip_addr_new, 24));
  3819. });
  3820. });
  3821. // ARP cache flush after address change
  3822. assert!(!iface.inner.has_neighbor(&IpAddress::Ipv4(remote_ip_addr)));
  3823. }
  3824. #[test]
  3825. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  3826. fn test_icmpv4_socket() {
  3827. use crate::wire::Icmpv4Packet;
  3828. let (mut iface, mut sockets, _device) = create();
  3829. let rx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3830. let tx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3831. let icmpv4_socket = icmp::Socket::new(rx_buffer, tx_buffer);
  3832. let socket_handle = sockets.add(icmpv4_socket);
  3833. let ident = 0x1234;
  3834. let seq_no = 0x5432;
  3835. let echo_data = &[0xff; 16];
  3836. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3837. // Bind to the ID 0x1234
  3838. assert_eq!(socket.bind(icmp::Endpoint::Ident(ident)), Ok(()));
  3839. // Ensure the ident we bound to and the ident of the packet are the same.
  3840. let mut bytes = [0xff; 24];
  3841. let mut packet = Icmpv4Packet::new_unchecked(&mut bytes);
  3842. let echo_repr = Icmpv4Repr::EchoRequest {
  3843. ident,
  3844. seq_no,
  3845. data: echo_data,
  3846. };
  3847. echo_repr.emit(&mut packet, &ChecksumCapabilities::default());
  3848. let icmp_data = &packet.into_inner()[..];
  3849. let ipv4_repr = Ipv4Repr {
  3850. src_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x02),
  3851. dst_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x01),
  3852. next_header: IpProtocol::Icmp,
  3853. payload_len: 24,
  3854. hop_limit: 64,
  3855. };
  3856. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  3857. // Open a socket and ensure the packet is handled due to the listening
  3858. // socket.
  3859. assert!(!sockets.get_mut::<icmp::Socket>(socket_handle).can_recv());
  3860. // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening
  3861. let echo_reply = Icmpv4Repr::EchoReply {
  3862. ident,
  3863. seq_no,
  3864. data: echo_data,
  3865. };
  3866. let ipv4_reply = Ipv4Repr {
  3867. src_addr: ipv4_repr.dst_addr,
  3868. dst_addr: ipv4_repr.src_addr,
  3869. ..ipv4_repr
  3870. };
  3871. assert_eq!(
  3872. iface.inner.process_icmpv4(&mut sockets, ip_repr, icmp_data),
  3873. Some(IpPacket::Icmpv4((ipv4_reply, echo_reply)))
  3874. );
  3875. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3876. assert!(socket.can_recv());
  3877. assert_eq!(
  3878. socket.recv(),
  3879. Ok((
  3880. icmp_data,
  3881. IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02))
  3882. ))
  3883. );
  3884. }
  3885. #[test]
  3886. #[cfg(feature = "proto-ipv6")]
  3887. fn test_solicited_node_addrs() {
  3888. let (mut iface, _, _device) = create();
  3889. let mut new_addrs = vec![
  3890. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64),
  3891. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64),
  3892. ];
  3893. iface.update_ip_addrs(|addrs| {
  3894. new_addrs.extend(addrs.to_vec());
  3895. *addrs = From::from(new_addrs);
  3896. });
  3897. assert!(iface
  3898. .inner
  3899. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002)));
  3900. assert!(iface
  3901. .inner
  3902. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff)));
  3903. assert!(!iface
  3904. .inner
  3905. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003)));
  3906. }
  3907. #[test]
  3908. #[cfg(feature = "proto-ipv6")]
  3909. fn test_icmpv6_nxthdr_unknown() {
  3910. let (mut iface, mut sockets, _device) = create();
  3911. let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3912. let payload = [0x12, 0x34, 0x56, 0x78];
  3913. let ipv6_repr = Ipv6Repr {
  3914. src_addr: remote_ip_addr,
  3915. dst_addr: Ipv6Address::LOOPBACK,
  3916. next_header: IpProtocol::HopByHop,
  3917. payload_len: 12,
  3918. hop_limit: 0x40,
  3919. };
  3920. let mut bytes = vec![0; 52];
  3921. let frame = {
  3922. let ip_repr = IpRepr::Ipv6(ipv6_repr);
  3923. ip_repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3924. let mut offset = ipv6_repr.buffer_len();
  3925. {
  3926. let mut hbh_pkt = Ipv6HopByHopHeader::new_unchecked(&mut bytes[offset..]);
  3927. hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c));
  3928. hbh_pkt.set_header_len(0);
  3929. offset += 8;
  3930. {
  3931. let mut pad_pkt = Ipv6Option::new_unchecked(&mut *hbh_pkt.options_mut());
  3932. Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt);
  3933. }
  3934. {
  3935. let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]);
  3936. Ipv6OptionRepr::Pad1.emit(&mut pad_pkt);
  3937. }
  3938. }
  3939. bytes[offset..].copy_from_slice(&payload);
  3940. Ipv6Packet::new_unchecked(&bytes)
  3941. };
  3942. let reply_icmp_repr = Icmpv6Repr::ParamProblem {
  3943. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  3944. pointer: 40,
  3945. header: ipv6_repr,
  3946. data: &payload[..],
  3947. };
  3948. let reply_ipv6_repr = Ipv6Repr {
  3949. src_addr: Ipv6Address::LOOPBACK,
  3950. dst_addr: remote_ip_addr,
  3951. next_header: IpProtocol::Icmpv6,
  3952. payload_len: reply_icmp_repr.buffer_len(),
  3953. hop_limit: 0x40,
  3954. };
  3955. // Ensure the unknown next header causes a ICMPv6 Parameter Problem
  3956. // error message to be sent to the sender.
  3957. assert_eq!(
  3958. iface.inner.process_ipv6(&mut sockets, &frame),
  3959. Some(IpPacket::Icmpv6((reply_ipv6_repr, reply_icmp_repr)))
  3960. );
  3961. }
  3962. #[test]
  3963. #[cfg(feature = "proto-igmp")]
  3964. fn test_handle_igmp() {
  3965. fn recv_igmp(device: &mut Loopback, timestamp: Instant) -> Vec<(Ipv4Repr, IgmpRepr)> {
  3966. let caps = device.capabilities();
  3967. let checksum_caps = &caps.checksum;
  3968. recv_all(device, timestamp)
  3969. .iter()
  3970. .filter_map(|frame| {
  3971. let ipv4_packet = match caps.medium {
  3972. #[cfg(feature = "medium-ethernet")]
  3973. Medium::Ethernet => {
  3974. let eth_frame = EthernetFrame::new_checked(frame).ok()?;
  3975. Ipv4Packet::new_checked(eth_frame.payload()).ok()?
  3976. }
  3977. #[cfg(feature = "medium-ip")]
  3978. Medium::Ip => Ipv4Packet::new_checked(&frame[..]).ok()?,
  3979. #[cfg(feature = "medium-ieee802154")]
  3980. Medium::Ieee802154 => todo!(),
  3981. };
  3982. let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, checksum_caps).ok()?;
  3983. let ip_payload = ipv4_packet.payload();
  3984. let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?;
  3985. let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?;
  3986. Some((ipv4_repr, igmp_repr))
  3987. })
  3988. .collect::<Vec<_>>()
  3989. }
  3990. let groups = [
  3991. Ipv4Address::new(224, 0, 0, 22),
  3992. Ipv4Address::new(224, 0, 0, 56),
  3993. ];
  3994. let (mut iface, mut sockets, mut device) = create();
  3995. // Join multicast groups
  3996. let timestamp = Instant::now();
  3997. for group in &groups {
  3998. iface
  3999. .join_multicast_group(&mut device, *group, timestamp)
  4000. .unwrap();
  4001. }
  4002. let reports = recv_igmp(&mut device, timestamp);
  4003. assert_eq!(reports.len(), 2);
  4004. for (i, group_addr) in groups.iter().enumerate() {
  4005. assert_eq!(reports[i].0.next_header, IpProtocol::Igmp);
  4006. assert_eq!(reports[i].0.dst_addr, *group_addr);
  4007. assert_eq!(
  4008. reports[i].1,
  4009. IgmpRepr::MembershipReport {
  4010. group_addr: *group_addr,
  4011. version: IgmpVersion::Version2,
  4012. }
  4013. );
  4014. }
  4015. // General query
  4016. let timestamp = Instant::now();
  4017. const GENERAL_QUERY_BYTES: &[u8] = &[
  4018. 0x46, 0xc0, 0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02, 0x47, 0x43, 0xac, 0x16,
  4019. 0x63, 0x04, 0xe0, 0x00, 0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64, 0xec, 0x8f,
  4020. 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  4021. 0x00, 0x00, 0x00, 0x00,
  4022. ];
  4023. {
  4024. // Transmit GENERAL_QUERY_BYTES into loopback
  4025. let tx_token = device.transmit().unwrap();
  4026. tx_token
  4027. .consume(timestamp, GENERAL_QUERY_BYTES.len(), |buffer| {
  4028. buffer.copy_from_slice(GENERAL_QUERY_BYTES);
  4029. Ok(())
  4030. })
  4031. .unwrap();
  4032. }
  4033. // Trigger processing until all packets received through the
  4034. // loopback have been processed, including responses to
  4035. // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0
  4036. // pkts that could be checked.
  4037. iface.socket_ingress(&mut device, &mut sockets);
  4038. // Leave multicast groups
  4039. let timestamp = Instant::now();
  4040. for group in &groups {
  4041. iface
  4042. .leave_multicast_group(&mut device, *group, timestamp)
  4043. .unwrap();
  4044. }
  4045. let leaves = recv_igmp(&mut device, timestamp);
  4046. assert_eq!(leaves.len(), 2);
  4047. for (i, group_addr) in groups.iter().cloned().enumerate() {
  4048. assert_eq!(leaves[i].0.next_header, IpProtocol::Igmp);
  4049. assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS);
  4050. assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr });
  4051. }
  4052. }
  4053. #[test]
  4054. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))]
  4055. fn test_raw_socket_no_reply() {
  4056. use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4057. let (mut iface, mut sockets, _device) = create();
  4058. let packets = 1;
  4059. let rx_buffer =
  4060. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4061. let tx_buffer = raw::PacketBuffer::new(
  4062. vec![raw::PacketMetadata::EMPTY; packets],
  4063. vec![0; 48 * packets],
  4064. );
  4065. let raw_socket = raw::Socket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer);
  4066. sockets.add(raw_socket);
  4067. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4068. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4069. const PAYLOAD_LEN: usize = 10;
  4070. let udp_repr = UdpRepr {
  4071. src_port: 67,
  4072. dst_port: 68,
  4073. };
  4074. let mut bytes = vec![0xff; udp_repr.header_len() + PAYLOAD_LEN];
  4075. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4076. udp_repr.emit(
  4077. &mut packet,
  4078. &src_addr.into(),
  4079. &dst_addr.into(),
  4080. PAYLOAD_LEN,
  4081. |buf| fill_slice(buf, 0x2a),
  4082. &ChecksumCapabilities::default(),
  4083. );
  4084. let ipv4_repr = Ipv4Repr {
  4085. src_addr,
  4086. dst_addr,
  4087. next_header: IpProtocol::Udp,
  4088. hop_limit: 64,
  4089. payload_len: udp_repr.header_len() + PAYLOAD_LEN,
  4090. };
  4091. // Emit to frame
  4092. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + PAYLOAD_LEN];
  4093. let frame = {
  4094. ipv4_repr.emit(
  4095. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4096. &ChecksumCapabilities::default(),
  4097. );
  4098. udp_repr.emit(
  4099. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4100. &src_addr.into(),
  4101. &dst_addr.into(),
  4102. PAYLOAD_LEN,
  4103. |buf| fill_slice(buf, 0x2a),
  4104. &ChecksumCapabilities::default(),
  4105. );
  4106. Ipv4Packet::new_unchecked(&bytes)
  4107. };
  4108. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4109. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4110. #[cfg(feature = "proto-ipv4-fragmentation")]
  4111. assert_eq!(
  4112. iface.inner.process_ipv4(
  4113. &mut sockets,
  4114. &frame,
  4115. Some(&mut iface.fragments.ipv4_fragments)
  4116. ),
  4117. None
  4118. );
  4119. }
  4120. #[test]
  4121. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw", feature = "socket-udp"))]
  4122. fn test_raw_socket_with_udp_socket() {
  4123. use crate::wire::{IpEndpoint, IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4124. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  4125. let (mut iface, mut sockets, _device) = create();
  4126. let udp_rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4127. let udp_tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4128. let udp_socket = udp::Socket::new(udp_rx_buffer, udp_tx_buffer);
  4129. let udp_socket_handle = sockets.add(udp_socket);
  4130. // Bind the socket to port 68
  4131. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4132. assert_eq!(socket.bind(68), Ok(()));
  4133. assert!(!socket.can_recv());
  4134. assert!(socket.can_send());
  4135. let packets = 1;
  4136. let raw_rx_buffer =
  4137. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4138. let raw_tx_buffer = raw::PacketBuffer::new(
  4139. vec![raw::PacketMetadata::EMPTY; packets],
  4140. vec![0; 48 * packets],
  4141. );
  4142. let raw_socket = raw::Socket::new(
  4143. IpVersion::Ipv4,
  4144. IpProtocol::Udp,
  4145. raw_rx_buffer,
  4146. raw_tx_buffer,
  4147. );
  4148. sockets.add(raw_socket);
  4149. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4150. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4151. let udp_repr = UdpRepr {
  4152. src_port: 67,
  4153. dst_port: 68,
  4154. };
  4155. let mut bytes = vec![0xff; udp_repr.header_len() + UDP_PAYLOAD.len()];
  4156. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4157. udp_repr.emit(
  4158. &mut packet,
  4159. &src_addr.into(),
  4160. &dst_addr.into(),
  4161. UDP_PAYLOAD.len(),
  4162. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4163. &ChecksumCapabilities::default(),
  4164. );
  4165. let ipv4_repr = Ipv4Repr {
  4166. src_addr,
  4167. dst_addr,
  4168. next_header: IpProtocol::Udp,
  4169. hop_limit: 64,
  4170. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  4171. };
  4172. // Emit to frame
  4173. let mut bytes =
  4174. vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + UDP_PAYLOAD.len()];
  4175. let frame = {
  4176. ipv4_repr.emit(
  4177. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4178. &ChecksumCapabilities::default(),
  4179. );
  4180. udp_repr.emit(
  4181. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4182. &src_addr.into(),
  4183. &dst_addr.into(),
  4184. UDP_PAYLOAD.len(),
  4185. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4186. &ChecksumCapabilities::default(),
  4187. );
  4188. Ipv4Packet::new_unchecked(&bytes)
  4189. };
  4190. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4191. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4192. #[cfg(feature = "proto-ipv4-fragmentation")]
  4193. assert_eq!(
  4194. iface.inner.process_ipv4(
  4195. &mut sockets,
  4196. &frame,
  4197. Some(&mut iface.fragments.ipv4_fragments)
  4198. ),
  4199. None
  4200. );
  4201. // Make sure the UDP socket can still receive in presence of a Raw socket that handles UDP
  4202. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4203. assert!(socket.can_recv());
  4204. assert_eq!(
  4205. socket.recv(),
  4206. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_addr.into(), 67)))
  4207. );
  4208. }
  4209. }